appendix g7
cost-effectiveness analysis tool: procost
This appendix describes the pertinent features of the calculation methodology used to determine the cost-effectiveness of conservation measures in the Fourth Draft Power Plan. The following describes implementation of the methodology in a spreadsheet tool as well as a description of the primary inputs and values used in this analysis.
Objective
The PROCOST model was developed to provide a method to characterize the costs and benefits of conservation programs so that they can be compared on an equal footing to other energy resource options including generation and other demand side resources. The model is intended to take a full “life-cycle” view of the program from a societal perspective. This requires that the model quantify all costs to society including first costs, operating costs, and periodic maintenance and replacement costs. The model must also be able to incorporate all of the benefits to society that can be quantified including avoided energy and capacity resources, avoided losses and costs on the transmission and distribution system, and non-energy benefits such as environmental externalities and the regional conservation credit.
Approach
PROCOST is based on the principal that the fundamental analysis of costs and benefits should take place at the individual conservation measure level. However, in the real world, these measures are typically bundled together to form “programs.” These bundles are often targeted to apply to a specific end-use within an identified market segment. These end-use/segments often require analysis across a number of “sub-segments” such as different building types and climate regions. PROCOST is set up to analyze all three of these levels of analysis: individual measure, measure bundle, and market segment program.
Because everything is built upon the individual conservation measures, PROCOST includes a great deal of detail to provide a complete life-cycle cost analysis. PROCOST uses an approach that computes the present value of all of the costs and benefits over the life a given measure. Measures are then grouped into the bundles and the appropriate costs and benefits are summed across measures. If appropriate, these bundles can be further aggregated into a program. If the program applies to multiple sub-segments of a market, then the bundles are weighted and then added together across the subsegments to represent the appropriate market segment for the region. PROCOST also provides the ability to bundle measures by category (such as end-use) and/or some cost-effectiveness criteria (such as levelized cost) There are currently ten pre-defined program aggregations included in PROCOST that automatically bundle the measures into different categories. The predefined programs include one that groups all cost-effective measures (benefits exceed costs), one that includes all cost-effective user defined categories, and five separate “bins” of levelized cost (0 to 10 mills per kWh, 10 to 20, etc.).
Structure
Figure G7-1 illustrates the basic structure of PROCOST. In brief, the program takes input for the program level variables from the ProData sheet, performs benefit and cost calculations on each of the specified measure worksheets and then aggregates the results across measure worksheets and weights them as appropriate, and finally reports the program results to another sheet. The following is a description of each of these functions.
Figure G7-1
PROCOST Structure
�
Program Definition
All of the inputs describing the proposed program to be analyzed are defined on the ProData worksheet. As shown in Figure G7-2, this input is broken into five separate blocks of input data. The first block, Program Parameters, details all of the appropriate assumptions needed to characterize the time value of the various cost and benefit stream. The Program Sponsor block provides the data needed to describe the variety of potential program sponsors. The Measure Worksheet block tells PROCOST which measures to include in this particular program analysis and defines the appropriate weighting factors for aggregation across sub-sectors. The Program Report Block describes which of the predefined programs to be included in the final report output. The Program File and Directory Names block describes where the appropriate input data and report output can be found. Each of these blocks is described in more detail below.
Figure G7- 2
ProData Program Data Input Sheet
�
Program Financial Inputs
As mentioned, this block contains all of the inputs to describe the time value of the various cost and benefits for the measures and the program itself. Each of these inputs is described further in the following:
Program Name - The name of the program analyzed
Program Type - The primary sector this program applies to. This must be one of the following: Residential, Commercial, Industrial, Irrigation, or T&D.
Program Life - This is the life of the longest element in the program, not to be confused with measure lifetime. For example, in new commercial, the mean lifetime of buildings is 45 years. Within the building, measures are installed that have lives varying from one year to 45 years. From a societal perspective, the program life for new commercial construction should be the life of the building or 45 years. Where the program consists essentially of a single measure, such as residential appliances, the program life should be set to the measure life.
Program Start Date - This is the time in the future that the program begins operating and costs and benefits begin accruing.
Present Value Time Zero - This is the year to which all cash flows are returned as present values. This year may be different than the cost reference year which simply adjusts the final results to some appropriate reference year costs; e.g. 1990 $.
Cost Reference Year - This is the year-dollars that all costs are reported in. Adjusted from the present value time zero by the inflation rate. For example if all costs are present valued to 1996 but the desired reference dollar value for comparison with other resources is 1995 dollars, then the 1996 present values are adjusted by the inflation rate for one year.
Real Discount Rate - This is the societal discount rate net of inflation.
Inflation Rate - This is the general rate of inflation typically defined using gross domestic product figures. This input is not necessary for most of the analysis and primarily affects the adjustment of costs from present value time zero to the appropriate reference year dollars.
Capital Real Escalation Rate - This input defines the escalation rate of capital cost items such as replacement costs within a measure over time. This value is typically set to zero, indicating that costs are anticipated to rise with the rate of inflation.
Utility Share of First Cost - Defines the share of first cost funded by utilities, or a party with utility cost of capital.
Utility Share of Replace Cost - Similar to first cost only applied at the time of measure replacement costs if the measure life is shorter than the program life thus requiring it to be re-purchased during the analysis period.
Utility Share of O&M - Defines the proportion of operation and maintenance costs borne by the utility.
Last Utility O&M Year - This provides for a termination point for utility involvement in paying for O&M costs.
T&D Line Loss Factor - This factor represents the percent of power that is lost as it is delivered from the generator through the transmission and distribution system to the end consumer. This factor allows conservation resources to be compared on an equal basis with generating resources on an energy equivalency basis. Traditionally, this value has been set at 7.5% which is allocated roughly 1/3 transmission and 2/3 distribution system losses.
Avoided T&D Cost Credit ($/kw-yr) - This represents the cost savings derived from deferral of distribution system upgrades; i.e., by employing a DSM program, the loading on the local distribution system is reduced, thus delaying the time at which the system will need to be upgraded due to load growth. Obviously, this value has a wide range depending on the specifics of the distribution system in which the DSM is placed. For example, urban distribution systems such as downtown Seattle or Portland would have a very high value due to the high cost of upgrading underground distribution systems. On the other extreme, rural areas might never grow beyond the current system capacity and DSM would have zero value in deferring costs. However, assuming that the regional system is growing at some positive value in the median case, the default value for this has been set at $5 per kilowatt reduction during the peak daytime period in January.
Externalities Credit (m/kwh) - This factor allows the use of a direct environmental cost credit for reductions in generation environmental impacts that are not already internalized in the cost of generating resources. An example might be the implementation of a carbon tax that increases the cost of all alternative fossil fired generation. It is used as a straight cost credit (in mills) per kilowatt-hour of energy saved after adjusting for T&D losses.
Regional Act C/E Credit (%) - This factor represents was intended to represent the credit given to conservation in the Regional Power Act to account for the non-quantifiable benefits to society of acquiring conservation. It could also be used to represent other non-quantifiable benefits. It is computed as a percentage of the present value of all costs including credits for avoided T&D and externalities if included. The default value used is the 10% given in the Act.
Program Admin. Cost (% of First Cost) - This factor represents the cost of administrating a program to acquire the conservation resource. It is computed as a percentage of the first cost of the measure bundle. This factor has varied widely in the prior experience gained through operation of utility programs depending on the type of effort expended to acquire the conservation resource. On the low end are market transformation programs such as codes and standards. On the high end are residential weatherization programs that have used direct home audits without incentive payments as the primary mechanism for acquisition.
Cost Coefficient of Variation - This factor is used to place a distribution around the mean value of the costs for the measures in order to simulate the range of cost-effectiveness experienced in actual program operation. It is used to generate one of the predefined measure-bundle programs. It represents the statistical parameter defined as the standard deviation divided by the mean. A large number represents a wide distribution with a lot of scatter; a small number represents a fairly narrow distribution that is well represented by the mean. The default number used is 0.25.
Measure Cost Deflator - This value is used to adjust the measure cost data to the present value time zero. For example, if the measure cost data is represented in 1990 dollars, this factor is used to adjust the costs to 1995 dollars using historical cost inflation data.
Program Sponsor Parameters
This data block defines the cost of capital for each of the potential financial investors (sponsors) for the program. PROCOST provides the ability to have up to three different “utility” sponsors in addition to the end consumer. Each of the sponsors can have a different cost of capital with it’s own finance lifetime. An example might be a program where Public Utilities, Investor Owned Utilities and Bonneville jointly funded a program. Each of the three utility sponsors must be given an appropriate percentage share of the utility funded portion represented by the “Utility Weight” column.
Measure Worksheets Included in Program
This data block provides for up to ten different measure worksheets to be included in the program. The name of each worksheet as it appears in the sheet tab must be entered in the Name input column. The Run Y/N column allows the user to maintain a list of worksheets to be used and to choose not to run all of them for any given program. The weights column provides the input area for the appropriate share of the program to be attributed to the measure sheet. If the weights do not add to 100% they will be normalized to 100% by the program before aggregation.
Program Reports
This data block allows the user to select specific output reports from among ten pre-defined programs generated automatically by PROCOST. The following describes these reports:
All Measures with B/C>1.00 - This program bundles all measures in all worksheets that have benefits exceeding costs.
All Categories with B/C>1.00 - This program bundles all measures in specified categories where the categories have benefits exceeding costs.
% of All Measures with B/C >1.00 - This program bundles the share of all measures in all sheets that have costs exceeding benefits. This uses the cost coefficient of variation to define the appropriate share of the distribution of any measure that would have costs exceeding benefits. See measure calculations for more details.
Block 1: x <=10 m/kWh, Block 2: 10< x <=20 m/kWh, through Block 7: x > 60m/kWh - These programs represent the appropriate bundling of measures meeting the specified levelized cost criteria. The output from these blocks provides an actual supply curve for use in a system model.
Individual Measure Results - This report dumps all of the results for all measures on all sheets.
Individual Category Results - This report dumps all of the results for all categories.
Program File and Directory Names
This data block simply provides PROCOST with the locations of critical input and output file locations. The files used by PROCOST are described as follows:
Savings Shape File - This file distributes the annual energy savings included in the measure worksheets to the appropriate load segments for each month for the affected end-uses. See Appendix G5 for a thorough description of these files.
Marginal Cost File - This file provides the data for the calculation of benefits derived from avoiding purchasing new resources at the margin. See Appendix G6 for more information on this file and its use.
Program Shape File Name: - This is the output file that describes the shape of the program savings for use by the system analysis.
Report FileName: - This is the output file that includes all of the program reports selected by the user in the Program Reports block.
Program Scenario Flags
This data block allows the user to control various aspects related to the characterization of the conservation program and the report output. It includes the following variables:
Apply administrative costs to (measures, categories, or program): This flag allows the administrative costs for the program to be applied at any of the specified levels. The purpose of this is to allow screening for cost-effectiveness at different levels. For example, the category level of aggregation could easily represent a targeted program effort at a specific group of measures and could be tested for cost-effectiveness including administrative costs using the category setting.
Sort measures by (benefit/cost ratio, levelized cost, or simple payback): This variable simply allows the output from the program to sort measures by any of the three specified criteria
Sort categories by (benefit/cost ratio, or levelized cost): Similar to the previous variable, this allows the output report to sort categories in terms of either be benefit/cost or levelized cost. Simple payback is not computed at the category level and is thus not included as a sort criteria.
Write results back to data input block: If set to yes, this switch copies results from the measure analysis back to the input data area of the measure worksheet immediately to the right of the input data block. This allows for post-processing of the input data such as sorting measures by benefit cost for re-calculation of interactive effects.
Filter categories to include only measures with benefit/cost ratios greater than 1: If set to yes, then PROCOST will aggregate measures into categories only if the measure has a cost benefit ratio greater than 1. If set to no, PROCOST will aggregate all measures in a given category, whether the measures are cost-effective or not.
Measure Analysis
The fundamental building block of the PROCOST analysis is the measure analysis. The following describes the data format and analysis that PROCOST performs on the measure worksheets selected on the ProData sheet. Figure G7-3 provides an example of a measure data sheet.
Figure G7-3
Sample PROCOST Measure Data Worksheet
��Measure Input Data
Currently up to ten different measure worksheets can be analyzed at once in a single PROCOST run. These worksheets may be created independently and added to the PROCOST workbook. There are three basic blocks of input data within the measure worksheet. The first block, General Description, is not directly used by PROCOST. It provides a working area to describe the worksheet and any ancillary data needed for calculations along with the PROCOST analysis. This block may be any number of rows and columns. The second block describes all of the parameters surrounding the cost and savings from the measure during it’s first year of life. The third block of data describes the cost and timing of component replacements over the measure lifetime. While the first block is basically self explanatory, the data inputs within the second and third blocks requires some future explanation.
Block 2: first year measure input data:
Category Name - This is the generic group of measures to be modeled as a separate program. PROCOST provides for “bundling” of measures into “categories” to better reflect actual conservation program operation.
Measure Name - The title of the measure to be analyzed.
Savings (kwh/yr) - The annual energy savings for the measure in kWh. This data should be in savings per unit (per house, showerhead, square foot of commercial building, etc.) so that the results can be scaled by the appropriate number of units over the resource analysis period.
Physical Life (years) - The lifetime of the measure defined as the number of years at which 50% of the measures are still in place across the appropriate sub-sector. This should represent the longest lived element of the measure that remains in place throughout the measure lifetime. Individual components with shorter lifetimes are accounted for separately in the Periodic Operations and Maintenance Input data block.
Capital Cost ($) - This is the up-front purchase cost of the measure. This may represent either incremental cost or full cost depending on the analysis framework; i.e., whether this is a new application with a defined current practice alternative cost or an early retirement of existing equipment thus incurring full cost of the measure.
Annual O&M ($) - This is the annual cost of operating and-or maintaining the measure. Examples would include annual service fees for heat pumps.
Shape Pointer - This is the appropriate load shape to use to distribute the annual savings to each of the load segments for each of the twelve months.
Non-E Val ($/yr) - This column provides an input value for the quantifiable non-energy related value provided by the measure in dollars per year. An example would be the value of the water savings from reduced flow showerheads. The water savings per year multiplied times the average cost per unit of water saved provides a method for quantifying these benefits.
Block 3: measure periodic operations and maintenance inputs:
Cost 1 - 3 ($) and Period 1 -3 (yrs) - This series of inputs allows the user to input up to three separate component replacement costs that occur periodically over the life of the measure. A good example is an efficient lighting fixture that includes ballasts, lamps and the fixture itself. While the fixture may remain in place for 21 years, the lamps will be replaced every 4 or 5 years and the ballasts may be replaced every ten years during the life of the fixture.
Calculation Flow
Figure G7-4 illustrates the basic flow of the measure by measure analysis calculation procedures. In summary, PROCOST reads the individual measure input data on costs and savings, calculates the benefits associated with the energy saved by the measure, and then calculates the present value of the various cost streams associated with purchasing, owning and operating the measure, then computes cost credits for such things as T&D losses, the regional act, etc. Next, PROCOST uses the present value costs and benefits to compute a number of figures of merit including levelized cost, benefit cost ratio, and net measure benefits. Next, PROCOST sums up the measures that are designated to be in the same category and generates appropriate figures of merit for the categories. Finally, PROCOST computes the appropriate summation across the various pre-defined program categories. The following Sections describe these steps in more detail.
Figure G7-4
Measure Analysis Flow-Chart
�

Measure benefit calculations: In addition to the obvious benefit of energy saved at the location where a measure is installed, there are other significant benefits that accrue to both the customer, the utility and society as a result of implementing a conservation measure. PROCOST provides a framework for analyzing these benefits individually and then sums them to provide a total benefit to society. These benefits can be categorized as follows:
Energy and Capacity Savings - The largest benefit to the regional power system comes from avoiding energy and capacity resource purchases (either “new” generation or “contracts”) at the margin. The first step in computing this benefit is to translate the savings at the end use into savings at the transmission system “busbar” in order to equalize the analysis with generating resource options. This is accomplished by multiplying the annual savings input on this data sheet by the Transmission and Distribution (T&D) System Loss Factor input on the ProData sheet. The second step is to distribute the annual energy savings into each of the four load segments in each month. Appendices G5 and G6 provide further detail on this process. The final step takes the energy in each of these 48 segments (four load segments by twelve months) and multiples them times the appropriate marginal system cost for the time period selected in the ProData sheet for starting year through the life of the program. Appendix G6 describes this calculation in more detail. Each of these corresponding values is brought back to the appropriate present value using standard capital recovery factor formulas and the real discount rate input on the ProData sheet.
Distribution System Avoided Costs - The second direct benefit to the regional power system comes from avoiding the need to upgrade or build new transmission and distribution system capacity. This is computed by taking the portion of the first year savings allocated to the peak load segment in January, dividing by the hours associated with that load segment to get the savings in kiloWatts, and multiplying the results by the distribution system cost credit input on the ProData sheet. This process is repeated for each year of the program with the result discounted back to present value and then summed over the life of the program.
Environmental Externalities - This benefit is intended to allow an attempt at quantifying the environmental costs of new generation or contract purchases that are avoided by installation of the measure. It is computed as follows: for each year of the program, the externalities cost credit (in mills per kilowatt-hour) is multiplied times the annual savings and then discounted to compute present value, and then summed across the life of the program.
Non-Energy Benefits - As mentioned previously, this benefit is intended to represent benefits not associated with energy, such as water savings. This is computed by taking the annual dollar savings per year, multiplying it times the inflation rate deflator for that year, discounting it using the real discount rate and then summing across the program life.

Measure cost calculations: Measure costs in PROCOST include not only the first cost of purchasing and installing the measure, but also any additional costs to maintain, repair or replace the measure over its projected lifetime. In the Council’s methodology for computing societal costs, measures are defined as part of larger systems that may have lifetimes longer than the measure itself. This creates difficulty in comparison with other measures that may have longer lifetimes. For example, in commercial buildings, lighting systems tend to last from fifteen to twenty years while insulation components generally last as long as the building itself. In order to compute the cost-effectiveness of these different lived measures, each measure is assumed to be completely re-purchased at the end of its life and the complete cycle of maintenance and replacement costs repeated as well. This process is repeated until the building itself is at the end of its useful life. The costs are then translated into present values and summed to generate a total societal cost over the lifetime of the measure. The following is a description of the methods used within PROCOST to compute each of these components of measure cost in the order that they are computed within the model.
Capital costs including financing - PROCOST computes the additional expense for financing the first purchase of the measures if required. It provides for up to three separate sponsors each with different financing costs to share the cost of the measure. An example could be a commercial lighting rebate program where the utility might provide a rebate to the consumer for 25% of the cost, the vendor might provide a 10% discount and the consumer would pick up the remaining 65% of the cost. Each of these sponsors for the measure are likely to have different costs of capital and PROCOST computes the cost of financing for each sponsor as appropriate and then weights them together.
Annual operation and maintenance - Because PROCOST provides the option to share the O&M costs between the end-consumer and another party (specified on ProData as Utility Share but it could represent an ESCO or other entity), it first computes a stream of annual O&M costs by inflating (if appropriate) the first year O&M costs and multiplying by the appropriate share to split the cost streams into separate consumer and utility cost streams. These annual costs streams are added to the periodic O&M cost streams and the financing cost streams and discounted using the appropriate discount rate for either the consumer or the utility to generate a present value.
Periodic O&M Costs - A similar cycle is analyzed by PROCOST within each measure lifetime. Some measures have individual components that need to be replaced periodically. A good example is a lighting fixture. Each fixture includes lamps, ballasts, and the hardware that encloses the components and reflects the light. The hardware component last as long as the fixture remains in place, or around 15 to 20 years. The ballasts last around 40,000 to 50,000 hours, or approximately 10 to 12 years and the lamps last around 10,000 to 15,000 hours or about 3 to 4 years. Within the lifetime of the fixture, it will have at least one ballast replacement and at least three lamp replacements. PROCOST computes the present value of each of these replacements throughout the life of each measure and then repeats these costs if the measure itself is repurchased multiple times to meet the life of the larger system that it fits in.
Figures of merit: benefit/cost ratio, levelized cost, simple payback: After computing both costs and benefits, PROCOST calculates several parameters that can be used to evaluate the relative cost-effectiveness of conservation measures. The following describes the calculation and import of each of these figures of merit :
Benefit/Cost Ratio: This calculation divides the total societal benefits by the total societal costs. Ratios greater than one imply that a measure is cost-effective over the life of the building or program in which it is installed. In some cases, this ratio is negative due to a measure that results in lower total present value costs than the base case; i.e., present value incremental costs are actually negative relative to the base case. This usually happens when there are significant trade-offs between low first costs with high maintenance costs for the base case and high first cost/low maintenance costs for the measure.
Levelized Cost: This figure represents a traditional view of the value of the energy savings, ignoring the time segment characteristics of the measure savings. PROCOST computes this figure by first summing all of the present value costs and then subtracting the non-energy related benefits (transmission and distribution system cost credits, non-energy benefits, environmental and Power Act credits) to compute the “net” present value cost of the measure. This net present value is then amortized over the life of the building or program in which the measure resides using standard capital recovery factors and the societal discount rate. The resulting annual “levelized” cost is divided by the annual energy savings adjusted for losses to bring the savings to the regional power system “bus-bar”. If the savings were uniformly distributed over the year, or if there were no seasonal or time of day variation in the marginal cost of new energy sources over the course of a year, then this figure would provide exactly the same relationship of relative cost-effectiveness as the benefit/cost ratio.
Simple Payback: This figure represents the time in years that it will take for the retail customer to recoup an investment in the measure if savings accrue at a marginal rate of energy cost. It is computed by taking the first cost of the measure as seen by the end-consumer and dividing by the annual energy savings times the single energy rate specified in the input data block. While this is clearly a simplistic view of the benefits of conservation to the end-consumer, this is the index most often referenced by end consumers in their decision making process. It is important to note that measures which have high first costs and negative incremental maintenance costs will be unduly penalized under this metric. Again, while this may seem unrealistic, field experience in all sectors indicates that for many decision makers this is the extent of their value analysis of conservation measures.
Simulation of distribution around cost and savings: All of the analysis described above is based on point-estimates of costs and savings. In reality, there exists a distribution around each of those points. This implies that for a measure that has a benefit cost-ratio of exactly one, that if the costs were distributed normally, roughly half of the actual applications of the measure would have a benefit/cost ratio less than one and the other half would have a ratio greater than one. Following this argument to the extremes implies that a measure with a benefit/cost ratio significantly less than one would still have some small amount of savings that would be cost-effective. Conversely, even a measure with a ratio exceeding ten would have some small fraction of savings that was not cost-effective. While this seems at first to be only of academic importance, in fact some conservation program have been operated in just this way. For example, some commercial programs screen every measure applied to every building and exclude those measures that fail the test. The alternative is a form of program operation commonly seen in the residential sector where measures are applied to every residential building because the program operations cost to perform screening are prohibitively high on a per unit basis.
While the primary set of outputs from PROCOST represent the latter type of program operation, a set of calculations is included that is intended to mimic the operation of a program where screening of individual applications takes place. This is accomplished by assuming that the present value of the measure costs are distributed normally around the mean with a coefficient of variance as specified on the ProData input sheet. PROCOST then determines the portion of the distribution where the costs are less than the calculated benefits. A new mean value for the cost is computed for this portion of the distribution and is used to represent the average cost. PROCOST computes the percent of the total distribution that is cost-effective, and multiplies the total benefits for the measure by this percentage. The benefit cost ratio is then re-computed by dividing the portion of the benefits by the mean value of the costs.
This calculation is performed as a rough attempt to examine the impacts of more realistic distributional analysis on the individual measure level. To add more accuracy, a monte-carlo simulation approach sampling distributions around both costs and savings and marginal energy costs would be needed.
Category Level Analysis
PROCOST provides the ability for measures to be aggregated into different pre-defined “categories” which can be analyzed for cost-effectiveness at that level. This represents another way that conservation programs are operated where a variety of different measures are offered under an umbrella program. For example, many commercial lighting programs offer a whole variety of technologies ranging from ballast replacements to entire fixtures under a single program. To facilitate this level of analysis, PROCOST will aggregate individual measures into the category specified for that measure and re-compute the total present value costs and benefits for that category. Benefit/cost ratios and levelized costs are then computed as figures of merit for the category. Similar to the measure analysis, PROCOST also computes a revised benefit/cost ration using the distribution around costs technique described above. The results for each of the categories defined in the measure data inputs are printed on the measure data worksheet below the individual measure results.
PROCOST provides the option of pre-screening measures to be included into a category based on the benefit/cost ratio exceeding 1.0.
Program Level Analysis
A further level of aggregation is provided and defined as the “program” level in order to generate inputs for the ISAAC model. In it’s simplest form, this level of aggregation occurs at the individual measure worksheet. This is the case for simple technologies such as residential appliances where the entire sector is assumed to be uniform and well represented by single values. PROCOST actually provides ten pre-defined aggregations of measures into different kinds of programs. Savings and costs are aggregated across measures fitting into these program definitions and benefit cost ratios and levelized cost figures are computed. The predefined program aggregations are:
All measures with benefit/cost ratios greater than 1.0:
All measures in categories where the category has a benefit cost ratio greater than 1.0:
The portion of the distribution of all measures with benefit/cost ratios greater than 1.0:
Measures with levelized costs less than 10 mills/kWh (including admin costs):
Measures with levelized costs greater or equal to 10 but less than 20 mills/kWh (including admin costs):
Measures with levelized costs greater or equal to 20 but less than 30 mills/kWh (including admin costs):
Measures with levelized costs greater or equal to 30 but less than 40 mills/kWh (including admin costs):
Measures with levelized costs greater or equal to 40 but less than 50 mills/kWh (including admin costs):
Measures with levelized costs greater or equal to 50 but less than 60 mills/kWh (including admin costs):
Measures with levelized costs greater or equal to 60 mills/kWh (including admin costs):

Sector Level Program Analysis
In some cases, there is a wide variation in not only costs and savings but also the types of measures applied across a given sector. The commercial sector analysis probably best exemplifies this type of complexity. In this case each measure worksheet represents some sub-set of the overall sector and is weighted proportionately. PROCOST provides the ability to aggregate both programs and categories across measure worksheets to provide analysis of programs as applied to the entire sector. The calculations are performed identically to those on the individual measure worksheets but are weighted using the worksheet weights defined on the ProData Measure worksheet input block. The results of the sector aggregated program are printed on a separate output report specified by the user. Figure G7-4 is an example of this sector level program output.
�Figure G7-4
Sector-Level Program Report
�Special Considerations
Commercial Load Shape Calculations
A separate procedure was developed to analyze the distribution of savings in the commercial sector. A separate module titled “Make_LSR” is included in the PROCOST workbook in order to handle this special case. The commercial sector load shape files are actually representative of the absolute shape of the total load of the particular end-use instead of a picture of the shape of the conservation resource itself. In order to use the PROCOST methodology, a load shape for each individual measure must be developed by first distributing actual use before the measure is installed, then shaping the use after the measure is installed, and finally subtracting the two sets to yield a conservation measure load shape that can be used by PROCOST. This procedure is developed more thoroughly in Appendices G-5 and G-6. However, PROCOST needs this routine to be in the same workbook in order to run even if commercial sector is not being analyzed.
ISAAC Output File Generation
Another procedure was developed that produces a load shape for ISAAC to use as the effective load shape for the all-cost-effective measures program. This module is titled “Write ISAAC” and is included in the PROCOST workbook. This routine was developed primarily for the commercial sector analysis since the conservation load shape will vary depending on the measures included in the all-cost -effective bundle.

PROCOST Visual Basic Code
The actual methodology behind PROCOST was programmed in Visual BASIC for Applications. The following section is the full listing of the PROCOST module.
�'**
'*
'* PROCOST: CONSERVATION MEASURE COST-EFFECTIVENESS ANALYSIS TOOL
'* VERSION 2.0, NORTHWEST POWER PLANNING COUNCIL
'* Last Revision May 28, 1996
'*
'**

'Declarations and Public Variables

Option Explicit

Const VersionNum = "2.0" ' Last Revision 5/1/96 JPH - modified for general distribution with Draft Plan Appndx G
Const minyr% = 1995
Const maxyr% = 2100
Const maxmeas% = 100 'used only on PVCostOnly stuff, other cases are dynamic
 'can be removed if Mark only uses one tab at time
Const maxshape% = 200 'JPH 7/17/95 Need additional space for LS files
Const maxseg% = 4
Const maxmajlife% = 100
Const maxspons% = 4
Const maxDoTabs% = 10 'max number of tabs to run procost on
Const NoMo% = 12

Const catcol% = 1
Const namcol% = 2
Const Savcol% = 3
Const lifecol% = 4
Const costcol% = 5
Const omcol% = 6
Const ptrcol% = 7
Const nervcol% = 8
Const maxpom% = 3 'Max periodic O&M entries per measure
Const POM_flag% = 2 'JPH 7/25/95: Periodic O&M Treatment flag: 1=PO&M period treated as fixed point in time;2=PO&M period treated as effective replacement life, repeated as necessary within measure life;

'Program Variable Declarations from ProData Sheet and Calculations
Public ProgName, ProgType As String
Public major_phys_life, nmeas, InservYr, UOMYr As Integer
Public PVTZero, CostRef, FirstMargyr, PVOnly As Integer
Public RealEsc, RealDisc, Infl As Single
Public TDCred, CECred, ExtCred, TDLossFac, Adminrate, CoV As Single
Public CostDefl As Single ' JPH 7/7/95 JPH cost deflator. Delete when costs are fully updated.
'
Public nspons As Integer
Public sponshare(), crf(), coc() As Single
Public UShare(4), UOMShr, Rate As Single
'
Public DoTabs(1 To maxDoTabs) As String
Public DoTabRun(1 To maxDoTabs) As String
Public DoTabWgt(1 To maxDoTabs) As Single
Public TabWeight(1 To maxDoTabs) As Single
Public nDoTabs As Integer
Public SumWgts As Single
'
Public report_file, SelectReport(12) As String
Public nDoReports As Integer
Public shape_file, marg_file As String
Public prog_shape_file, FileFound As String
'
Public DiscFac(minyr To maxyr), ExtraD As Single
Public Deflator(minyr To maxyr) As Single

'Measure Worksheet Input Public Variable Declarations
Public mname(), shape_ptr(), catname(), mcatname(), sponsor() As String
Public msave(), mcost(), mom(), mval() As Double
Public pomper(), pomcost(), nerv() As Single

'Measure level calculated variable declarations
Public pvmeas_spons(), pvcapmeas_spons(), ecost_spons() As Single
Public pvom_spons() As Single
Public pv_utilom(), pv_custom() As Single
Public PVmeas(), measPVadmin(), ecostmeas(), ecostmeas2(), pvom() As Single
Public PVExt(), Capac(), PVTD(), PVNerv(), PVAct() As Single
Public mcesav(), mnetben(), mbcratio() As Single
Public savprob(), xmean(), xmean2() As Single

'Measure worksheet Category public declarations
Public ncat, catmap(), nprogcat As Integer
Public pvcat(), savecat(), ecostcat(), valcat(), bccat(), fccat() As Single
Public probcat(), catmean() As Single
Public catcesav() As Single

'Worksheet level Program calculated variable declarations
Public ProName() As String
Public ProSave(), ProPV2(), ProPV1(), ProFC(), ProLvl() As Single
Public ProAdmin(), ProBen(), ProRatio(), ProAvg() As Single
Public pvpro, savepro, ecostpro As Single
Public reald(), ediscfac As Single
Public finlife(), mlife() As Integer

'Sector level program Measure public declarations
Public NSecMeas As Integer
Public secmtabname(), secmcatname(), secmname() As String
Public secmsave(), secmcost(), secmval(), secmPV(), secmadmin(), secmPVadmin() As Single
Public secmecost(), secmecost2(), secmbcratio(), secmpayback(), secmweights() As Single
Public secmwgtdsave(), secmwgtdcost(), secmwgtdPVadmin() As Single

'Sector level program Category public declarations
Public NSecCat, progcatmap() As Integer
Public ProgCatName() As String
Public progpvcat(), progsavecat(), progecostcat(), progvalcat() As Single
Public progbccat(), progfccat() As Single
Public progprobcat(), progcatmean(), progcatcesav() As Single

'Sector level program Totals public declarations
Public Weight(10) As Single ' JPH 8/11/95 added savings weighting factors for resource roll-up.
Public SecSave(10), SecPV2(10), SecPV1(10), SecFC(10), SecLvl(10), SecAdmin(10), SecBen(10), SecRatio(10), SecAvg(10) As Single
Public SecTotal(10) As Single

'Savings shape file and marginal cost file input data declarations
Public shapeid() As String
Public shapeval(12, maxseg, maxshape) As Single
Public nseg, nshape As Integer
Public margcost(1 To 12, minyr To maxyr, 1 To maxseg) As Single

Public startrow, endrow As Integer
Public TimeAndDate As String
Public srow As Integer
Public ShapeOut(12, 4) As Single
Public ResourceShape(12, 4) As Single

Public Filenum, Filenum2 As Integer
'Variables for "PV Cost Only" runs
Public PVCostOnly(maxmeas, maxDoTabs) As Single
Public NCostOnly(maxDoTabs) As Integer
Public ScenerioFileName As String

'Various Flag settings for specialized operation
'Public Const ResSys = True 'Logical for whether running in Mark & Tom's residential system
Public ResSys 'Logical for whether running in Mark & Tom's residential system
Public AdminFlag, MeasSortFlag, CatSortFlag As Integer 'Sorting codes:1: B/C Ratio, 2: Lev. Cost; 3: Net Ben.
Public EUFlag 'JPH 7/17/95 JEFF's End Use Flag: Set to false if not for JPH
Public ProgCatFilterFlag 'Sets screen for measures with B/C > 1.0
Public WriteBackFlag 'JPH - flag for whether to write back results to measure input data block for sorting purposes
Public ProgShapeOutFlag 'JPH - flag to determine if program shape output file is to be written
Public dsmKW(12, maxseg, maxmeas) As Double 'JPH 7/27/95 segment savings

'***
'Control Routine for ProCost Macro
Sub PC_Main()
 Dim itab As Integer

'Set Flags to false as default

 ResSys = False
 EUFlag = False
 WriteBackFlag = False

'Set Worksheet Parameters
 Application.ScreenUpdating = False
 Application.Calculation = xlManual
 Application.StatusBar = "Running ProCost..."

'Load Program Data Variables and Arrays with Cell Data and Initilize Report
 LoadProData

'Check for special conditions for res. space heat or commercial runs
 If ProgType = "ResSpHt" Then
 ResSys = True
 Workbooks("curve16.xls").Sheets("ProData").Activate
 Reset
 ElseIf ProgType = "Commercial" Then
 EUFlag = True
 WriteBackFlag = True
 End If

'Read marginal cost data
 GetMarg

'Load Program Conservation Load Shapes
 If EUFlag = False Then GetShape (shape_file) ' If using savings only load shapes, read values here; else do in iTab loop

'Initialize Sector Program Variables
 ProgInit

'If Tom's run, open scenario for use
 If ResSys Then Workbooks(ScenerioFileName).Activate

'Begin Measure Worksheet Processing
 For itab = 1 To nDoTabs
 Sheets(DoTabs(itab)).Select 'Set target worksheet to active sheet
 LoadMeasData 'Load measure data from active sheet
'Comment out the next line if not a JPH run
 If EUFlag Then MakeLSR (itab) 'JPH 7/17/95 create load shape files
 If nmeas > 0 Then
 CheckSav 'Determine run type (sets switch PVOnly and if true, fills array PVMeas)
 ProCost (itab) 'Calculate Measure & Category Costs and Benefits
 If Not PVOnly Then
 If WriteBackFlag Then WriteBackToInputBlock (itab)
 WriteBack (itab) 'Write results back to worksheet
 If EUFlag Then WriteShapeOutput (itab) 'JPH 7/17/95 Write results back to JH measure rows & summary load shape file
 End If
 End If 'nmeas > 0
 Next itab
'Write program report
 WriteProReport
'Reset Excel Parameters
 Application.StatusBar = "ProCost Finished"
 Application.Calculation = xlAutomatic
 Application.ScreenUpdating = True
 Application.StatusBar = ""
End Sub
'***
Function FileExists(FileName)
 FileExists = (Dir(FileName) <> "")
End Function

'***
Sub CheckSav()
 Dim imeas As Integer
'---
' Determine whether this is a "PV Only" run. Indicated
' by a zeros for all measure savings.
'---
 PVOnly = True
 For imeas = 1 To nmeas ' subprogram measure loop
 If msave(imeas) <> 0 Then
 PVOnly = False
 Exit For
 End If
 Next imeas

 If PVOnly And nmeas > maxmeas Then
 MsgBox "The 'PV Only' run requested for tab " & ActiveSheet.Name _
 & " has " & Str$(nmeas) & " measures. The current max for PV Only runs is " _
 & Str$(maxmeas) & ".", 16, "Too Many Measures"
 End
 End If

End Sub

'***
Sub CalcBen(Inserv, AnnSav, Sptr, Life, DiscVal, PeakSav, jmeas) 'JPH 7/17/95 added jmeas
'Calculates measure marginal cost benefits.

 Dim ishap, sdx, measerror, seg, yr, mo As Integer
 Dim segsav, segval As Double

 If AnnSav = 0 Then
 DiscVal = 0
 Exit Sub
 End If

'If Jeff's flag is set skip to calculation directly
 If EUFlag = True Then GoTo KeepOnTruckin ' JPH 7/17/95

'Find shape set
 ishap = 1
 Do While (ishap <= nshape And UCase(Trim$(shapeid(ishap))) <> UCase(Trim$(Sptr)))
 ishap = ishap + 1
 Loop
 If ishap > nshape Then
 MsgBox "Can't find shape " & Sptr, 48, "Shape Not Found"
 measerror = True
 End
 'Exit Sub
 Else
 sdx = ishap 'and keep on truckin
 End If

KeepOnTruckin: ' JPH 7/17/95
 DiscVal = 0
 For seg = 1 To nseg
 For yr = Inserv To Inserv + Life - 1
 For mo = 1 To 12
 If EUFlag = True Then ' JPH 7/17/95
 segsav = dsmKW(mo, seg, jmeas) ' JPH 7/17/95
 Else ' JPH 7/17/95
 segsav = AnnSav * shapeval(mo, seg, sdx)
 End If ' JPH 7/17/95
 segval = segsav * margcost(mo, yr, seg) / 1000# 'should be $
 DiscVal = DiscVal + segval / DiscFac(yr)
 Next mo
 Next yr
 Next seg

 If EUFlag Then ' JPH 7/17/95
 PeakSav = dsmKW(1, 1, jmeas) ' JPH 7/17/95
 Else ' JPH 7/17/95
 PeakSav = AnnSav * shapeval(1, 1, sdx)
 End If ' JPH 7/17/95

'--
' Remove any extra real discounting
' between PV time zero and inservice date.
'--
 DiscVal = DiscVal * ExtraD

End Sub

'***
Sub LabelHeader(irow, icol, addcol, Label)

 ActiveSheet.Cells(irow, icol) = Label
 Range(Cells(irow, icol), Cells(irow, icol + addcol)).Select
 Selection.BorderAround Weight:=xlMedium, ColorIndex:=xlAutomatic
 With Selection
 .HorizontalAlignment = xlCenterAcrossSelection
 .VerticalAlignment = xlBottom
 .Orientation = xlHorizontal
 End With

End Sub

'**
Sub WriteBackToInputBlock(ktab)

 Dim imeas, irow As Integer
 Dim BusSavCol, PVcostcol, levcostcol, netbenkwh As Integer

 BusSavCol = 15
 PVcostcol = 16
 levcostcol = 17
 netbenkwh = 18

 Application.StatusBar = "Writing Back Input Data Block for " & DoTabs(ktab)
 irow = startrow + 1

'Clear results area
 Range(Cells(startrow, BusSavCol), Cells(endrow, netbenkwh)).Clear

'Format Numeric Cells
 Range(Cells(startrow, BusSavCol), Cells(endrow, BusSavCol)).NumberFormat = "0.00"
 Range(Cells(startrow, PVcostcol), Cells(endrow, PVcostcol)).NumberFormat = "0.00"
 Range(Cells(startrow, levcostcol), Cells(endrow, levcostcol)).NumberFormat = "0.0"
 Range(Cells(startrow, netbenkwh), Cells(endrow, netbenkwh)).NumberFormat = "0.00;[Red]-0.00"

'Begin Measure Loop
 For imeas = 1 To nmeas

'Write measure results
 ActiveSheet.Cells(irow, BusSavCol) = msave(imeas) '
 ActiveSheet.Cells(irow, PVcostcol) = PVmeas(imeas) '
 ActiveSheet.Cells(irow, levcostcol) = ecostmeas(imeas) '
 ActiveSheet.Cells(irow, netbenkwh) = mnetben(imeas) / msave(imeas) 'NetPV/kWh
'calculate next row
 irow = irow + 1

 Next imeas
End Sub
Sub WriteBack(iset)
 Application.StatusBar = "Writing Results for " & DoTabs(iset) & "..."

 Dim pvcol, lvlcol, refcol, outrow1, outcol1, irow, icol, i, j As Integer
 Dim lastcol, txcolor, patcolor As Integer 'lastcol = last results column, used in formatting
 Dim firstcatrow, grid, r1 As Integer
 Dim Savcol, capcol, tdcol, extcol, uomcol, comcol, actcol As Integer
 Dim valcol, netcol, pvcol1, pvtotcol1, lvlcol1, nervcol As Integer
 Dim bencol1, ratcol1, pvcol2, avgcol, adcol, fccol, probcol, stdcol As Integer
 Dim header(30) As String
 Dim maxrows As Integer

 Dim ratcol2, probcol2, pvmeancol2, cesavcol As Integer

'Write results to measure worksheet
 maxrows = 500 'used to clear output area, may need to search for empty cells
 Savcol = 3
 capcol = 4
 pvcol1 = 5
 uomcol = 9
 comcol = 10
 tdcol = 11
 nervcol = 12
 extcol = 13
 actcol = 14
 pvtotcol1 = 15
 lvlcol1 = 20
 valcol = 25
 netcol = 26
 ratcol2 = 27
 probcol2 = 28
 pvmeancol2 = 29
 cesavcol = 30
 lastcol = 30
 outrow1 = endrow + 4 'starting row for output

'Fill header with column titles
 header(1) = "Category"
 header(2) = "Measure"
 header(Savcol) = "Annual Busbar"
 header(capcol) = "Jan Peak (kw)"
 header(nervcol) = "Non-E Value"
 header(tdcol) = "T&D"
 header(extcol) = "Exter-nalities"
 header(actcol) = "Act C-E Credit"
 header(uomcol) = "Utility"
 header(comcol) = sponsor(nspons)
 header(valcol) = "Marg Benefit"
 header(netcol) = "Net Benefit"
 header(ratcol2) = "B/C Ratio"
 header(probcol2) = "Prob C<B"
 header(pvmeancol2) = "Mean CE PV"
 header(cesavcol) = "Mean CE Sav"

'First set of sponsor names
 icol = pvcol1 - 1
 For i = 1 To nspons
 icol = icol + 1
 header(icol) = sponsor(i)
 Next i

'Second set of sponsor names
 icol = pvtotcol1 - 1
 For i = 1 To nspons
 icol = icol + 1
 header(icol) = sponsor(i)
 Next i
 icol = icol + 1
 header(icol) = "Total"

'Third set of sponsor names
 icol = lvlcol1 - 1
 For i = 1 To nspons
 icol = icol + 1
 header(icol) = sponsor(i)
 Next i
 icol = icol + 1
 header(icol) = "Total"

 Application.StatusBar = "Clearing results area for " & DoTabs(iset) & "..."

'Clear results area
 Range(Cells(endrow + 1, 1), Cells(endrow + maxrows, lastcol)).Clear
 Range(Rows(endrow + 1), Rows(endrow + maxrows)).RowHeight = ActiveSheet.StandardHeight

'Format Numeric Cells
 Range(Cells(outrow1, 3), Cells(outrow1 + maxrows, lastcol)).NumberFormat = "0.0"
 Range(Cells(outrow1 + 2, capcol), Cells(outrow1 + 2 + nmeas, capcol)).NumberFormat = "0.00"
 Range(Cells(outrow1 + 2, netcol), Cells(outrow1 + 2 + nmeas, netcol)).NumberFormat _
 = "0.0;[Red]-0.0"

 Application.StatusBar = "Writing Headers for " & DoTabs(iset) & "..."

'Write and format measure output headers
'Procost version
 txcolor = 2
 patcolor = 54
 Format_Header outrow1 - 1, 3, txcolor, patcolor, 0
 LabelHeader outrow1 - 1, 1, 2, "ProCost Results, Version " & Trim(VersionNum) _
 & ", " & Format(Time, "Medium Time") & " " & Format(Date, "General Date")
' Cells(outrow1 - 1, 1).HorizontalAlignment = xlLeft

'Measure header
 irow = outrow1
 txcolor = 1
 patcolor = 24 '24 = lavender
 Format_Header irow, lastcol, txcolor, patcolor, 0
 LabelHeader irow, 1, 1, "Measure Results (" & Trim(Str(PVTZero)) & " $)"
 LabelHeader irow, Savcol, 1, "Savings"
 LabelHeader irow, pvcol1, 3, "PV Capital"
 LabelHeader irow, uomcol, 1, "PV O&M"
 LabelHeader irow, tdcol, 3, "PV Credits"
 LabelHeader irow, pvtotcol1, 4, "Total PV Costs"
 LabelHeader irow, valcol, 1, "PV Benefits"
 LabelHeader irow, lvlcol1, 4, "Levelized Cost (mills/kwh)"
 LabelHeader irow, ratcol2, 3, "C/E Distribution Results"

 irow = outrow1 + 1
 patcolor = 40 '40 = light gray
 Format_Header irow, lastcol, txcolor, patcolor, 1

 ActiveSheet.Cells(irow, 1) = "Category"
 ActiveSheet.Cells(irow, 2) = "Measure"
 Rows(irow).Select
 Selection.EntireRow.AutoFit

'Write header row
 For icol = 1 To lastcol
 ActiveSheet.Cells(irow, icol) = header(icol)
 Next icol

'Write measure results
 Application.StatusBar = "Writing Measure Results"
 For i = 1 To nmeas
 irow = outrow1 + i + 1
 ActiveSheet.Cells(irow, 1) = mcatname(i) 'Category names
 ActiveSheet.Cells(irow, 2) = mname(i) 'Measure names
 ActiveSheet.Cells(irow, Savcol) = msave(i) 'Measure savings
 ActiveSheet.Cells(irow, capcol) = Capac(i) 'Capacity
 ActiveSheet.Cells(irow, tdcol) = PVTD(i)
 ActiveSheet.Cells(irow, extcol) = PVExt(i)
 ActiveSheet.Cells(irow, nervcol) = PVNerv(i)
 ActiveSheet.Cells(irow, actcol) = PVAct(i)
 ActiveSheet.Cells(irow, uomcol) = pv_utilom(i)
 ActiveSheet.Cells(irow, comcol) = pv_custom(i)
 ActiveSheet.Cells(irow, valcol) = mval(i)
 ActiveSheet.Cells(irow, netcol) = mnetben(i)
 ActiveSheet.Cells(irow, ratcol2) = mbcratio(i)
 ActiveSheet.Cells(irow, probcol2) = savprob(i)
 ActiveSheet.Cells(irow, pvmeancol2) = xmean(i)
 ActiveSheet.Cells(irow, cesavcol) = mcesav(i)

'Write capital PVs
 icol = pvcol1 - 1
 For j = 1 To nspons
 icol = icol + 1
 ActiveSheet.Cells(irow, icol) = pvcapmeas_spons(i, j)
 Next j

'Write total PVs
 icol = pvtotcol1 - 1
 For j = 1 To nspons
 icol = icol + 1
 ActiveSheet.Cells(irow, icol) = pvmeas_spons(i, j)
 Next j
 icol = icol + 1
 ActiveSheet.Cells(irow, icol) = PVmeas(i)

'Write levelized cost
 icol = lvlcol1 - 1
 For j = 1 To nspons
 icol = icol + 1
 ActiveSheet.Cells(irow, icol) = ecost_spons(i, j)
 Next j
 icol = icol + 1
 ActiveSheet.Cells(irow, icol) = ecostmeas(i)

 Next i

'Format B/C Ratio Cells
 Range(Cells(outrow1 + 2, ratcol2), Cells(irow, ratcol2)).NumberFormat = "0.00"
 Range(Cells(outrow1 + 2, probcol2), Cells(irow, probcol2)).NumberFormat = "0.00" 'pjs 7/14
 Cells(outrow1 + 2, ratcol2).Activate
 For i = 1 To nmeas
 If ActiveCell < 0 Then
 ActiveCell.Font.ColorIndex = 5 '5=blue
 ElseIf ActiveCell >= 1 Then
 ActiveCell.Font.ColorIndex = 5 '5=blue
 Else
 ActiveCell.Font.ColorIndex = 3 '3=red
 End If
 ActiveCell.Offset(1, 0).Activate
 Next i

'***
'Write category information

 Application.StatusBar = "Writing Category Results for " & DoTabs(iset) & "..."

 Savcol = 3
 pvcol1 = 4
 lvlcol1 = 5
 bencol1 = 6
 netcol = 7
 ratcol1 = 8
 probcol = 9
 pvcol2 = 10
 cesavcol = 11
 lastcol = 11

'Fill header with column titles
 header(1) = ""
 header(2) = "Category"
 header(Savcol) = "Busbar Savings"
 header(pvcol1) = "PV Cost"
 header(lvlcol1) = "Levelized Cost"
 header(bencol1) = "PV Benefits"
 header(netcol) = "Net Benefits"
 header(ratcol1) = "B/C Ratio"
 header(probcol) = "Prob C<B"
 header(pvcol2) = "Mean PV Cost"
 header(cesavcol) = "Mean CE Sav"
 firstcatrow = irow + 3 '3 rows below measure results

 irow = firstcatrow
 txcolor = 1
 patcolor = 20 'light blue green

 Format_Header irow, lastcol, txcolor, patcolor, 0
 LabelHeader irow, 1, lastcol - 1, "Category Totals (" & Trim(Str(PVTZero)) & " $)"

 irow = firstcatrow + 1
 txcolor = 1
 patcolor = 40 'Real light gray
 Format_Header irow, lastcol, txcolor, patcolor, 1
 Rows(irow).Select
 Selection.EntireRow.AutoFit

'Write header row
 For icol = 1 To lastcol
 ActiveSheet.Cells(irow, icol) = header(icol)
 Next icol

'Write category values
 irow = firstcatrow + 1
 For i = 1 To ncat
 irow = irow + 1
 ActiveSheet.Cells(irow, 2) = catname(i)
 ActiveSheet.Cells(irow, Savcol) = savecat(i)
 ActiveSheet.Cells(irow, pvcol1) = pvcat(i)
 ActiveSheet.Cells(irow, lvlcol1) = ecostcat(i)
 ActiveSheet.Cells(irow, bencol1) = valcat(i)
 ActiveSheet.Cells(irow, netcol) = valcat(i) - pvcat(i)
 ActiveSheet.Cells(irow, ratcol1) = bccat(i)
 ActiveSheet.Cells(irow, probcol) = probcat(i)
 ActiveSheet.Cells(irow, pvcol2) = catmean(i)
 ActiveSheet.Cells(irow, cesavcol) = catcesav(i)
 Next i

'Sort results by B/C ratio
'First sort low to high to get negatives at top of list.
'Then sort non-negative values from high to low.

 r1 = firstcatrow + 2 'first row of category numeric output
 Range(Cells(r1, 2), Cells(r1 + ncat, lastcol)).Sort _
 key1:=Cells(r1, ratcol1), Order1:=xlAscending, header:=xlNo

'Find first non-negative value and resort.
 i = 0
 Cells(firstcatrow + 1, ratcol1).Activate
 Do
 ActiveCell.Offset(1, 0).Activate
 i = i + 1
 Loop Until ActiveCell >= 0 Or i = ncat

 Range(Cells(r1 + i - 1, 2), Cells(r1 + ncat, lastcol)).Sort _
 key1:=Cells(r1, ratcol1), Order1:=xlDescending, header:=xlNo

'Format B/C Ratio Cells
 Range(Cells(firstcatrow + 2, ratcol1), Cells(firstcatrow + 2 + ncat, probcol)).NumberFormat = "0.00"
 Cells(firstcatrow + 2, ratcol1).Activate
 For i = 1 To ncat
 If ActiveCell < 0 Then
 ActiveCell.Font.ColorIndex = 5 '11 dark blue
 ElseIf ActiveCell >= 1 Then
 ActiveCell.Font.ColorIndex = 5 '5=blue
 Else
 ActiveCell.Font.ColorIndex = 3 '3=red
 End If
 ActiveCell.Offset(1, 0).Activate
 Next i

'***
'Write program total information

 Application.StatusBar = "Writing Total Program Results for " & DoTabs(iset) & "..."

 Savcol = 3
 pvcol1 = 4
 fccol = 5
 adcol = 6
 pvcol2 = 7
 avgcol = 8
 lvlcol1 = 9
 bencol1 = 10
 ratcol1 = 11
 lastcol = 11

'Fill header with column titles
 header(1) = ""
 header(2) = "Totals Basis"
 header(Savcol) = "Busbar Savings"
 header(pvcol1) = "PV Cost"
 header(lvlcol1) = "Levelized Cost"
 header(bencol1) = "PV Benefits"
 header(ratcol1) = "B/C Ratio"
 header(fccol) = "First Cost"
 header(adcol) = "Admin Cost"
 header(pvcol2) = "Program Cost"
 header(avgcol) = "Program $/KWa"

 firstcatrow = irow + 3 'start 3 rows below category results

 irow = firstcatrow
 txcolor = 1
 patcolor = 37 'light blue

 Format_Header irow, lastcol, txcolor, patcolor, 0
 LabelHeader irow, 1, 10, "Totals for Measures/Categories with Benefits Exceeding Costs"

 irow = firstcatrow + 1
 txcolor = 1
 patcolor = 40 'Real light gray
 Format_Header irow, lastcol, txcolor, patcolor, 1
 Rows(irow).Select
 Selection.EntireRow.AutoFit

'Write header row
 For icol = 1 To lastcol
 ActiveSheet.Cells(irow, icol) = header(icol)
 Next icol

'Write program values
 irow = firstcatrow + 2
 For i = 1 To 10
 ActiveSheet.Cells(irow, 2) = ProName(i)
 ActiveSheet.Cells(irow, Savcol) = ProSave(i)
 ActiveSheet.Cells(irow, pvcol1) = ProPV1(i)
 ActiveSheet.Cells(irow, fccol) = ProFC(i)
 ActiveSheet.Cells(irow, adcol) = ProAdmin(i)
 ActiveSheet.Cells(irow, pvcol2) = ProPV2(i)
 ActiveSheet.Cells(irow, avgcol) = ProAvg(i)
 ActiveSheet.Cells(irow, lvlcol1) = ProLvl(i)
 ActiveSheet.Cells(irow, bencol1) = ProBen(i)
 ActiveSheet.Cells(irow, ratcol1) = ProRatio(i)
 irow = irow + 1
 Next i

'Format B/C Ratio Cells
 Range(Cells(firstcatrow + 2, ratcol1), Cells(firstcatrow + 2 + 3, ratcol1)).NumberFormat = "0.00"
 Cells(firstcatrow + 2, ratcol1).Activate
 For i = 1 To 10
 If ActiveCell >= 1 Then
 ActiveCell.Font.ColorIndex = 5 '5=blue
 Else
 ActiveCell.Font.ColorIndex = 3 '3=red
 End If
 ActiveCell.Offset(1, 0).Activate
 Next i

End Sub
'***
Sub GetShape(ShapeFileName) 'JPH 7/17/95
 Application.StatusBar = "Reading data from Savings Shape Data File..."
'Reads savings shape data file
 Dim FileName, msg, textline, s1 As String
 Dim Exists, i, s, seg, j, iend, firsta As Integer
 Dim shapetot, x1, x2 As Double

 ReDim shapeid(maxshape) As String

 On Error GoTo ErrHandler1

 FileName = ShapeFileName 'JPH 7/17/95
 Exists = FileExists(FileName)
 If Not Exists Then
 msg = FileName & " Does not Exist"
 MsgBox msg, 48, "File Not Found"
 End
' Else 'Read File
 End If 'Read File

 Filenum = FreeFile()
 Open FileName For Input As Filenum
 nseg = maxseg
 'nseg = CInt(Mid(textline, 20, 2))

'Locate start of data
 Locate Filenum, "********", 8, 1, textline, iend
 If iend Then
 MsgBox "Can't find start of data in shapefile " & FileName & _
 ". Check file format and retry. ", 48, "Read Error"
 Close Filenum
 End
 End If

 i = 0
ReadSet:
'Read Set Id
 i = i + 1
 Line Input #Filenum, textline
 shapeid(i) = Mid$(textline, 8, 8)
'Remove any of ICF's asterisks
 firsta = InStr(shapeid(i), "*")
 If firsta > 0 Then shapeid(i) = Left$(shapeid(i), firsta - 1)

'Move to and read segment data
 Line Input #Filenum, textline 'Read header line
 Line Input #Filenum, textline 'Read dashed line
 For seg = 1 To nseg
 Input #Filenum, s, shapeval(1, s, i), shapeval(2, s, i), shapeval(3, s, i), shapeval(4, s, i), shapeval(5, s, i), shapeval(6, s, i), shapeval(7, s, i), shapeval(8, s, i), shapeval(9, s, i), shapeval(10, s, i), shapeval(11, s, i), shapeval(12, s, i)
 Next seg

'Read delimiter for next shape and check for end of file
 If Not EOF(Filenum) Then Line Input #Filenum, textline 'Read header line
' x1 = LOF(Filenum)
' x2 = Loc(Filenum)
 If Not EOF(Filenum) Then
 GoTo ReadSet
 Else
 nshape = i
 End If

' End If

'Normalize values to 100% and restore as fractions
 For i = 1 To nshape
 shapetot = 0
' First total the segments for each shape
 For s = 1 To nseg
 For j = 1 To 12
 shapetot = shapetot + shapeval(j, s, i)
 Next j
 Next s
' Next, normalize and restore as fraction
 For s = 1 To nseg
 For j = 1 To 12
 shapeval(j, s, i) = shapeval(j, s, i) / shapetot
 Next j
 Next s
 Next i

 Reset
 Close Filenum
 Application.StatusBar = ""
 Exit Sub

ErrHandler1:
 Application.StatusBar = ""
 MsgBox "Error Reading " & FileName & ". " & Error(Err), 48, "Read Error"
 Close Filenum
 End

End Sub

'***
Sub GetMarg()
'Reads marginal cost data file
'Treatment of inflation here assumes marginal costs are in real CostRef year dollars.

 Dim FileName, msg, textline As String
 Dim dummymo As String * 3
 Dim Exists, s, first, lastyr, dummyr, m, y, iend As Integer

 Application.StatusBar = "Reading data from Marginal Cost Data file..."

 On Error GoTo ErrHandler2

 FileName = marg_file
 Exists = FileExists(FileName)
 If Not (Exists) Then
 msg = FileName & " Does not Exist"
 MsgBox msg, 48, "File Not Found"
 End
 End If

'Read file
 Filenum2 = FreeFile()
 Open FileName For Input As Filenum2

'Locate start of data
 Locate Filenum2, "********", 8, 1, textline, iend
 If iend Then
 MsgBox "Can't find start of data in marginal cost file " & FileName & _
 ". Check file format and retry. ", 48, "Read Error"
 Close Filenum2
 End
 End If

 'Operating year data from ISAAC input here on a calendar year basis,
 'i.e. variables 'y' & 'm' represent cal yr values.
 'FirstMargYr represents first full calendar year of data.
 'The read logic assumes an ISAAC data format of "OP Year, Month"
 'and a first record of September.

 lastyr = 0 'initial value, updated in reads.
 m = 8 'initialized to August, first read will be September
 first = True

 Do While Not EOF(Filenum2)
 m = m + 1
 If m = 13 Then 'increment calendar year
 m = 1
 y = y + 1
 End If
 If Not EOF(Filenum2) Then 'EOF doesn't seem to work. Also checked in ErrHandler
 If first Then
 Input #Filenum2, y, dummymo, margcost(m, y - 1, 1), margcost(m, y - 1, 2), margcost(m, y - 1, 3), margcost(m, y - 1, 4)
 FirstMargyr = y 'first full calendar year of data, with Op Yr format, will be year on first record
 y = y - 1
 first = False
 Else
 Input #Filenum2, dummyr, dummymo, margcost(m, y, 1), margcost(m, y, 2), margcost(m, y, 3), margcost(m, y, 4)
 End If
 If y > lastyr Then lastyr = y 'will be right on loop exit
 End If
 Loop

ErrHandler2:
 If Not EOF(Filenum2) Then
 Application.StatusBar = ""
 MsgBox "Error Reading " & FileName & ". " & Error(Err), 48, "Read Error"
 End
 End If

 Close Filenum
 Close Filenum2

 If InservYr < FirstMargyr Then
 MsgBox "Program starts before marginal cost start date of " & Str(FirstMargyr) _
 & ". Change start date and retry.", _
 16, "Program Start too Early"
 End
 End If

'Marg Cost data ends at August in last year so first fill Sep to Dec of last year.
'Use previous year's data, adjusted for escalation implied in last January to January move.

 For m = 9 To 12
 For s = 1 To 4
 margcost(m, lastyr, s) = margcost(m, lastyr - 1, s) _
 * margcost(1, lastyr, s) / margcost(1, lastyr - 1, s)
 Next s
 Next m

'Extend real margcost data to end of array.
 If lastyr < maxyr Then
 For s = 1 To 4
 For y = lastyr + 1 To maxyr
 For m = 1 To 12
 margcost(m, y, s) = margcost(m, lastyr, s)
 Next
 Next
 Next
 End If

'Apply inflation to entire array if appropriate.
'Assumption here is that real marginal costs from data file are in Cost Reference Yr dollars
 If Infl <> 0 Then
 For s = 1 To 4
 For y = FirstMargyr + 1 To maxyr
 For m = 1 To 12
 margcost(m, y, s) = margcost(m, y, s) * (1 + Infl) ^ (y - CostRef)
 Next
 Next
 Next
 End If

 Application.StatusBar = ""

End Sub
'***
Sub LoadProData()

 Application.StatusBar = "Loading Data from ProData sheet..."

 Dim i, irow, c, yr, l, iwork, response, s As Integer
 Dim nomd, r, sumx As Single
 Dim rc As String

 ReDim progcatmap(100)

 nspons = 4 'last sponsor = customer
 ReDim sponsor(1 To nspons)
 ReDim sponshare(1 To nspons)
 ReDim crf(1 To nspons)
 ReDim coc(1 To nspons)
 ReDim finlife(1 To nspons)
 ReDim reald(1 To nspons)

'Make sure we're on the ProData sheet
 Sheets("ProData").Select

'---
'Load Overall Program Data from Block 1
 ProgName = ActiveSheet.Evaluate("Prog_Name")
 ProgType = ActiveSheet.Evaluate("Prog_Type")
 major_phys_life = ActiveSheet.Evaluate("Prog_Life")
 InservYr = ActiveSheet.Evaluate("InService")
 PVTZero = ActiveSheet.Evaluate("PVTZero")
 CostRef = ActiveSheet.Evaluate("CostRefYr")
 RealDisc = ActiveSheet.Evaluate("Real_Disc")
' Infl = ActiveSheet.Evaluate("Inflation")
 Infl = 0 'Force real until chance to test fully.
 RealEsc = ActiveSheet.Evaluate("Real_Escl")
 UShare(1) = ActiveSheet.Evaluate("Inst_1")
 UShare(2) = ActiveSheet.Evaluate("Inst_2")
 UShare(3) = ActiveSheet.Evaluate("Inst_3")
 UShare(4) = ActiveSheet.Evaluate("Inst_4")
 UOMShr = ActiveSheet.Evaluate("OMShr1")
 UOMYr = ActiveSheet.Evaluate("LastOMYr")
 TDLossFac = ActiveSheet.Evaluate("LossFac")
 TDCred = ActiveSheet.Evaluate("TDCred")
 ExtCred = ActiveSheet.Evaluate("ExtCred")
 CECred = ActiveSheet.Evaluate("CECred")
 Adminrate = ActiveSheet.Evaluate("AdminRate")
 CoV = ActiveSheet.Evaluate("COV")
'JPH 8/7/95 Set up cost deflator: delete when costs are further developed
 CostDefl = ActiveSheet.Evaluate("CostDefl")

'Test Program Inputs for valid entries
 If CostDefl = 0 Then CostDefl = 1#

'---
'Load utility and consumer sponsor data from data block 2
 For i = 1 To nspons
 sponsor(i) = ActiveSheet.Evaluate("SponNam" & Trim(Str(i)))
 coc(i) = ActiveSheet.Evaluate("coc" & Trim(Str(i)))
 finlife(i) = ActiveSheet.Evaluate("FinL" & Trim(Str(i)))
 If i < nspons Then
 sponshare(i) = ActiveSheet.Evaluate("Share" & Trim(Str(i)))
 End If
 Next i
'Load customer marginal energy cost per kWh
 Rate = ActiveSheet.Evaluate("rate").Value
'Test Program sponsor inputs for valid entries
' Test sponsor shares
 For i = 1 To nspons - 1
 sumx = sumx + sponshare(i)
 Next i
 If sumx <> 1 Then
 If sumx = 0 Then
 MsgBox "No Utility Shares Specified", 16, "Invalid Weights"
 End
 Else
 response = MsgBox("Input utility weights don't equal 100%. " _
 & " Choose OK to continue and values will be normalized to 100%." _
 & " Choose Cancel to quit.", 33, "Invalid Weights")
 If response = vbCancel Then
 End
 Else
 For i = 1 To nspons - 1
 sponshare(i) = sponshare(i) / sumx
 Next i
 End If
 End If
 End If
' Test sponsor cost of capital and compute capital recov. factors
 For i = 1 To nspons
 If coc(i) = 0 Then coc(i) = 0.000001 'Set negligibly small for formula compatibility
 r = coc(i)
 l = finlife(i)
 If l < 1 Then
 MsgBox "Invalid sponsor finance life." & Chr$(13) & "Minimum finance life is one year.", 16, "ERROR"
 End
 End If
 crf(i) = (r * (1 + r) ^ l) / ((1# + r) ^ l - 1#)
 Next i

'---
'Load Measure worksheet data from data block 3
 nDoTabs = 0
 For i = 1 To maxDoTabs
 DoTabs(i) = ActiveSheet.Evaluate("DoTab" & Trim(Str(i)))
 DoTabRun(i) = ActiveSheet.Evaluate("DoTab" & Trim(Str(i)) & "Run")
 DoTabWgt(i) = ActiveSheet.Evaluate("DoTab" & Trim(Str(i)) & "Wgt")
 Next i

'Test Measure worksheet input data for valid entries
 For i = 1 To maxDoTabs
 If DoTabs(i) <> "" And (DoTabRun(i) = "Y" Or DoTabRun(i) = "y") Then
' Test selected worksheet weights for non-zero entries
 If DoTabWgt(i) = 0 Then
 MsgBox "Weights for Worksheet Number " & Str(i) & " is Zero. Please re-enter and starrt over!"
 'response = MsgBox(msg, vbExclamation, "INPUT ERROR")
 End
 End If
 nDoTabs = nDoTabs + 1
 DoTabs(nDoTabs) = DoTabs(i)
 TabWeight(nDoTabs) = DoTabWgt(i)
 End If
 Next i
' Test for valid measure worksheet names
 For i = 1 To nDoTabs
 If ProgType = "ResSpHt" Then
 For iwork = 1 To Workbooks(ScenerioFileName).Worksheets.Count 'MODIFIED MB 7/1/95
 If UCase(DoTabs(i)) = UCase(Workbooks(ScenerioFileName).Worksheets.Item(iwork).Name) Then GoTo Found 'MODIFIED MB 7/1/95
 Next iwork
 MsgBox "Can't find worksheet named '" & DoTabs(i) & _
 "' in Run Tabs data. Change spelling and retry.", 16, "Worksheet not Found"
 End
 Else 'standalone version
 For iwork = 1 To Worksheets.Count
 If UCase(DoTabs(i)) = UCase(Worksheets.Item(iwork).Name) Then GoTo Found
 Next iwork
 MsgBox "Can't find worksheet named '" & DoTabs(i) & _
 "' in Run Tabs data. Change spelling and retry.", 16, "Worksheet not Found"
 End
 End If
Found:
 Next i

'---
'Load report selection data from data block 4
 report_file = ActiveSheet.Evaluate("Report_File")
 For i = 1 To 12
 SelectReport(i) = ActiveSheet.Evaluate("Report" & Trim(Str(i)))
 Next i

'Test for valid report selection entries
ReportFileTest:
 For iwork = 1 To Worksheets.Count
 If UCase(report_file) = UCase(Worksheets.Item(iwork).Name) Then
 response = MsgBox("Program Report Worksheet named: " & report_file & _
 " already exists. Overwrite?", 3, "PROGRAM REPORT WORKSHEET PRIOR COPY")
 Select Case response
 Case 2 'oops, start over
 End
 Case 6 'yes, overwrite
 Sheets(report_file).Delete
 GoTo ReportTest
 Case 7 'no, don't overwrite
 report_file = InputBox("Enter the worksheet name for the program report:", "PROGRAM REPORT WORKSHEET NAME")
 GoTo ReportFileTest
 Case Else
 End
 End Select
 End If
 Next iwork

ReportTest:
 nDoReports = 0
 For i = 1 To 12
 If SelectReport(i) <> "" Then
 nDoReports = nDoReports + 1
 End If
 Next i
 If nDoReports = 0 Then
 MsgBox "No reports selected. Please select one or more reports by placing any character in the box next to the desired report title."
 End
 End If

'---
'Load input and ouput file names from data block 5
 shape_file = ActiveSheet.Evaluate("Alloc_File")
 marg_file = ActiveSheet.Evaluate("MC_File")
 prog_shape_file = ActiveSheet.Evaluate("Prog_Shape_Out")
 AdminFlag = ActiveSheet.Evaluate("admin_flag")
 MeasSortFlag = ActiveSheet.Evaluate("meas_sort_flag")
 CatSortFlag = ActiveSheet.Evaluate("cat_sort_flag")
 If UCase(ActiveSheet.Evaluate("prog_cat_filter")) = "Y" Then ProgCatFilterFlag = True
 If UCase(ActiveSheet.Evaluate("write_back_flag")) = "Y" Then WriteBackFlag = True

'Test entered filenames for validity
 FileFound = Dir(shape_file)
 If FileFound = "" Then MsgBox "Savings shape file: " & shape_file & "cannot be found. Please try again!": End
 FileFound = Dir(marg_file)
 If FileFound = "" Then MsgBox "Marginal Cost file: " & marg_file & "cannot be found. Please try again!": End
ShapeFileTest:
 If prog_shape_file = shape_file Then
 response = MsgBox("Program Output shape file name dupicates conservation load shape file name. Re-enter program shape file name?", 3)
 Select Case response
 Case 2 'oops, start over
 End
 Case 6 'yes, try again on output file name
 prog_shape_file = InputBox("Enter the file name for the ISAAC load shape file:", "PROGRAM OUTPUT FILE NAME")
 GoTo ShapeFileTest
 Case 7 'no, don't try again
 ProgShapeOutFlag = False
 MsgBox ("No Program Shape Output file will be created.")
 Case Else
 End
 End Select
 End If
'
 FileFound = Dir(prog_shape_file)
 If FileFound <> "" Then
 response = MsgBox("Program Output Shape file already exists. Overwrite?", 3)
 Select Case response
 Case 2 'oops, start over
 End
 Case 6 'yes, overwrite
 GoTo EndTest
 Case 7 'no, don't overwrite
 prog_shape_file = InputBox("Enter the file name for the ISAAC load shape file:", "PROGRAM OUTPUT FILE NAME")
 GoTo ShapeFileTest
 Case Else
 End
 End Select
 End If
EndTest:
'Test program flags for validity
 If (AdminFlag < 0 Or AdminFlag > 3) Then AdminFlag = 3
 If (MeasSortFlag < 0 Or MeasSortFlag > 3) Then MeasSortFlag = 1
 If (CatSortFlag < 0 Or CatSortFlag > 3) Then CatSortFlag = 1

'---
'Process input data for use by other subroutines
'
'Set up nominal discount rates
' This may need to vary with sponsor
' If so, move to ProCost
 If RealDisc = 0 Then RealDisc = 0.000001 'Set negligibly small for formula compatibility
 nomd = (1 + Infl) * (1 + RealDisc)
 For yr = minyr To maxyr
 DiscFac(yr) = nomd ^ (yr - PVTZero + 1) ' Assumes end of year payment
 Next yr
'Set up inflation deflator
 For yr = minyr To maxyr
 Deflator(yr) = (1# + Infl) ^ (yr - CostRef)
 Next yr
'Normalize measure worksheet weightings
 SumWgts = 0
 For i = 1 To nDoTabs
 SumWgts = SumWgts + TabWeight(i)
 Next i
 For i = 1 To nDoTabs
 TabWeight(i) = TabWeight(i) / SumWgts
 Next i
 Application.StatusBar = "Writing Program Report Headers"

End Sub

'***
Sub ProgInit() ' This subroutine initializes variables at the
' sector program level and creates the report
' worksheet with headers for the selected reports

Dim i, irow As Integer
Dim rc As String

'Reset sector level program variables
ReDim secmtabname(1)
ReDim secmcatname(1)
ReDim secmname(1)
ReDim secmsave(1)
ReDim secmcost(1)
ReDim secmval(1)
ReDim secmPV(1)
ReDim secmadmin(1)
ReDim secmPVadmin(1)
ReDim secmecost(1)
ReDim secmecost2(1)
ReDim secmbcratio(1)
ReDim secmpayback(1)
ReDim secmweights(1)
ReDim secmwgtdsave(1)
ReDim secmwgtdcost(1)
ReDim secmwgtdPVadmin(1)

'Initialize sector level program total variables
 For i = 1 To 10 ' Note: 1 thru 10 correspond to reports 1 thru 10
 SecTotal(i) = 0
 SecSave(i) = 0
 SecBen(i) = 0
 SecPV1(i) = 0
 SecFC(i) = 0
 SecRatio(i) = 0
 SecAdmin(i) = 0
 SecPV2(i) = 0
 SecLvl(i) = 0
 SecAvg(i) = 0
 Next i
'Initialize sector level program counters for measures and categories
 NSecMeas = 0
 NSecCat = 0

'---
' Create report worksheet and load headers
' for program and category
'

 ActiveWorkbook.Sheets.Add after:=ActiveWorkbook.Sheets("ProData")
 With ActiveSheet
 .Name = report_file
 .standardWidth = 12
 End With
'Set column widths
 Range("A1").ColumnWidth = 14
 Range("B1").ColumnWidth = 30
 Range("C1").ColumnWidth = 14
'Set row heights
 Range("A2").RowHeight = 45
 Range("A5").RowHeight = 30
 Range("A26").RowHeight = 15
 Range("A27").RowHeight = 30
'Copy input data from ProData Sheet
 Sheets("ProData").Range("ProgData0").Copy
 ActiveSheet.Paste (Range("a2"))
 Sheets("ProData").Range("ProgData").Copy
 ActiveSheet.Paste (Range("a4"))
 Sheets("ProData").Range("ProgData2").Copy
 ActiveSheet.Paste (Range("e4"))
'Copy header for program level output
 Sheets("ProData").Range("ProgOutHdr").Copy
 ActiveSheet.Paste (Range("a26"))
'If Category Summary Specified then print category header
 If SelectReport(12) <> "" Then
' Compute Starting Row for Category Header
 irow = 28 + nDoReports
 rc = "A" & irow
' Copy Header for category level output
 Range(rc).RowHeight = 15
 Sheets("ProData").Range("CatOutHdr").Copy
 ActiveSheet.Paste (Range(rc))
 rc = "A" & (irow + 1)
 Range(rc).RowHeight = 30
 End If

End Sub

'***
Sub WriteProReport()
 Dim i, j, k, icol, irow, imeas, icat As Integer
 Dim firstcatrow, lastcatrow, firstmeasrow, lastmeasrow As Integer
 Dim r1, lastcol, catsortcol, msortcol As Integer
 Dim rc, ProgCatName() As String
 Dim std As Single

 Sheets(report_file).Select
'--
' Sector Level Program Report
'--
'Compute Sector Level Program Totals
 For i = 1 To 10
 If SecPV1(i) <> 0 Then
 SecPV1(i) = SecPV1(i) / SecTotal(i)
 SecFC(i) = SecFC(i) / SecTotal(i)
 SecBen(i) = SecBen(i) / SecTotal(i)
 Else
 SecPV1(i) = 0
 SecFC(i) = 0
 SecBen(i) = 0
 End If
 SecAdmin(i) = Adminrate * SecFC(i)
'If admin at measure level then already included in PV cost; else add in
 If AdminFlag = 1 Then
 SecPV2(i) = SecPV1(i)
 Else
 SecPV2(i) = SecPV1(i) + SecAdmin(i)
 End If
'
 If SecPV2(i) <> 0 Then
 SecRatio(i) = SecBen(i) / SecPV2(i)
 End If
'
 If SecSave(i) <> 0 Then
 SecSave(i) = SecSave(i) / SecTotal(i)
 SecLvl(i) = SecPV2(i) * 1000 / (SecSave(i) * ediscfac)
 SecAvg(i) = SecPV2(i) / (SecSave(i) / 8760)
 Else
 SecSave(i) = 0
 SecLvl(i) = 0
 SecAvg(i) = 0
 End If
 Next i

'Write Sector Level Program values to Output Report
 irow = 28
 For i = 1 To 10
 If SelectReport(i) <> "" Then
 ActiveSheet.Cells(irow, 2) = ProName(i)
 ActiveSheet.Cells(irow, 3) = SecSave(i)
 ActiveSheet.Cells(irow, 4) = SecFC(i)
 ActiveSheet.Cells(irow, 5) = SecPV1(i)
 ActiveSheet.Cells(irow, 6) = SecBen(i)
 ActiveSheet.Cells(irow, 7) = SecAdmin(i)
 ActiveSheet.Cells(irow, 8) = SecPV2(i)
 ActiveSheet.Cells(irow, 9) = SecLvl(i)
 ActiveSheet.Cells(irow, 10) = SecRatio(i)
 ActiveSheet.Cells(irow, 11) = SecAvg(i)
' Format B/C Ratio Cells
 If SecSave(1) < 10 Then
 Range(Cells(irow, 3), Cells(irow + nDoReports, 8)).NumberFormat = "0.00"
 Else
 Range(Cells(irow, 3), Cells(irow + nDoReports, 8)).NumberFormat = "0"
 End If
 Range(Cells(irow, 9), Cells(irow + nDoReports, 9)).NumberFormat = "0.0"
 Range(Cells(irow, 10), Cells(irow + nDoReports, 10)).NumberFormat = "0.00"
 Range(Cells(irow, 11), Cells(irow + nDoReports, 11)).NumberFormat = "0"
 Cells(irow, 10).Activate
 If ActiveCell >= 1 Then
 ActiveCell.Font.ColorIndex = 5 '5=blue
 Else
 ActiveCell.Font.ColorIndex = 3 '3=red
 End If
 irow = irow + 1
 End If
 Next i

'--
' Category Level Program Report
'--
 If SelectReport(12) <> "" Then

'Determine program level categories
 ReDim ProgCatName(1 To NSecMeas) 'probably won't use all of these but don't know ncat at this point
 ReDim progcatmap(1 To NSecMeas)
 NSecCat = 1
 ProgCatName(1) = secmcatname(1)
 progcatmap(1) = 1

 For imeas = 2 To NSecMeas
 For icat = 1 To NSecCat
 If UCase(secmcatname(imeas)) = UCase(ProgCatName(icat)) Then
 progcatmap(imeas) = icat
 secmcatname(imeas) = ProgCatName(icat)
 GoTo FoundMatch2
 End If
 Next icat
' If fall thru to here, no match found in category names, add a new one
 NSecCat = NSecCat + 1
 ProgCatName(NSecCat) = secmcatname(imeas)
 progcatmap(imeas) = NSecCat
FoundMatch2:
 Next imeas

 ReDim progpvcat(NSecCat)
 ReDim progsavecat(NSecCat)
 ReDim progecostcat(NSecCat)
 ReDim progvalcat(NSecCat)
 ReDim progbccat(NSecCat)
 ReDim progfccat(NSecCat)
 ReDim progprobcat(NSecCat)
 ReDim progcatcesav(NSecCat)
 ReDim progcatmean(NSecCat)

' Calculate category totals
 For imeas = 1 To NSecMeas
 icat = progcatmap(imeas)
 If ProgCatFilterFlag And (secmPV(imeas) > secmval(imeas)) Then GoTo skipmeas
 If AdminFlag = 2 Then ' Add admin cost at category [option].
 progpvcat(icat) = progpvcat(icat) + (secmPV(imeas) + secmcost(imeas) * Adminrate) * secmweights(imeas)
 Else
 progpvcat(icat) = progpvcat(icat) + secmPV(imeas) * secmweights(imeas)
 End If
 progsavecat(icat) = progsavecat(icat) + secmsave(imeas) * secmweights(imeas)
 progvalcat(icat) = progvalcat(icat) + secmval(imeas) * secmweights(imeas)
 progfccat(icat) = progfccat(icat) + secmcost(imeas) * secmweights(imeas)
skipmeas:
 Next imeas

' Compute sector level program levelized cost and bc ratio
 For icat = 1 To NSecCat
 If progsavecat(icat) <> 0 Then
 progecostcat(icat) = progpvcat(icat) * 1000 / (progsavecat(icat) * ediscfac)
 Else
 progsavecat(icat) = 0
 progecostcat(icat) = 0
 End If
 If progpvcat(icat) <> 0 Then
 progbccat(icat) = progvalcat(icat) / progpvcat(icat)
 Else
 progpvcat(icat) = 0
 progbccat(icat) = 0
 End If
' Compute category distribution of cost with a B/C ratio of >=1.00
 If Not PVOnly And (progpvcat(icat) <> 0) Then
 std = progpvcat(icat) * CoV
 If std < 0 Then std = -1 * std
 progprobcat(icat) = Application.NormDist(progvalcat(icat), progpvcat(icat), std, True)
 TailMean progvalcat(icat), progpvcat(icat), std, progcatmean(icat)
 progcatcesav(icat) = progprobcat(icat) * progsavecat(icat)
 Else
 progprobcat(icat) = 0
 progcatmean(icat) = 0
 progcatcesav(icat) = 0
 End If
 Next icat
' Write Sector Level Program Report
' Set category report parameters
 irow = irow + 4
 firstcatrow = irow
 lastcol = 11
 Select Case CatSortFlag
 Case 1
 catsortcol = 8
 Case 2
 catsortcol = 7
 Case 3
 catsortcol = 7
 End Select
'
 For i = 1 To NSecCat
 ActiveSheet.Cells(irow, 2) = ProgCatName(i)
 ActiveSheet.Cells(irow, 3) = progsavecat(i)
 ActiveSheet.Cells(irow, 4) = progfccat(i)
 ActiveSheet.Cells(irow, 5) = progpvcat(i)
 ActiveSheet.Cells(irow, 6) = progvalcat(i)
 ActiveSheet.Cells(irow, 7) = progecostcat(i)
 ActiveSheet.Cells(irow, 8) = progbccat(i)
 ActiveSheet.Cells(irow, 9) = progprobcat(i)
 ActiveSheet.Cells(irow, 10) = progcatmean(i)
 ActiveSheet.Cells(irow, 11) = progcatcesav(i)
 irow = irow + 1
 Next i
 lastcatrow = irow - 1
' Sort results
 r1 = firstcatrow 'first row of category numeric output
 If CatSortFlag = 1 Then
 Range(Cells(firstcatrow, 1), Cells(lastcatrow, lastcol)).Sort _
 key1:=Cells(firstcatrow, catsortcol), Order1:=xlAscending, header:=xlNo
' Find first non-negative value and resort.
 i = 0
 Cells(firstcatrow - 1, catsortcol).Activate
 Do
 ActiveCell.Offset(1, 0).Activate
 i = i + 1
 Loop Until ActiveCell >= 0 Or i = NSecCat
 Range(Cells(firstcatrow + i - 1, 1), Cells(lastcatrow, lastcol)).Sort _
 key1:=Cells(firstcatrow, catsortcol), Order1:=xlDescending, header:=xlNo

 ElseIf CatSortFlag = 2 Or 3 Then
 Range(Cells(firstcatrow, 1), Cells(lastcatrow, lastcol)).Sort _
 key1:=Cells(firstcatrow, catsortcol), Order1:=xlAscending, header:=xlNo
 End If
' Format B/C Ratio Cells
 If SecSave(1) < 10 Then
 Range(Cells(firstcatrow, 3), Cells(firstcatrow + NSecCat, lastcol)).NumberFormat = "0.00"
 Else
 Range(Cells(firstcatrow, 3), Cells(firstcatrow + NSecCat, lastcol)).NumberFormat = "0"
 End If
 Range(Cells(firstcatrow, 7), Cells(firstcatrow + NSecCat, 7)).NumberFormat = "0.0"
 Range(Cells(firstcatrow, 9), Cells(firstcatrow + NSecCat, 9)).NumberFormat = "0.00"
 Cells(firstcatrow, 8).Activate
 For i = 1 To NSecCat
 If ActiveCell < 0 Then
 ActiveCell.Font.ColorIndex = 5 '11 dark blue
 ElseIf ActiveCell >= 1 Then
 ActiveCell.Font.ColorIndex = 5 '5=blue
 Else
 ActiveCell.Font.ColorIndex = 3 '3=red
 End If
 ActiveCell.Offset(1, 0).Activate
 Next i
 End If

'--
' Measure Level Program Report
'--
 If SelectReport(11) <> "" Then
 irow = irow + 2
' Copy header for measure level output
 Sheets("ProData").Range("MeasOutHdr").Copy
 rc = "A" + irow
 Range(rc).RowHeight = 15
 ActiveSheet.Paste (Range(rc))
 rc = "A" & (irow + 1)
 Range(rc).RowHeight = 30
 irow = irow + 2
 Select Case MeasSortFlag
 Case 1
 msortcol = 9 'sort on benefit/cost ratio
 Case 2
 msortcol = 8 'sort on levelized cost
 Case 3
 msortcol = 10 'sort on payback
 End Select
 firstmeasrow = irow
'Write measure results
 For imeas = 1 To NSecMeas
 ActiveSheet.Cells(irow, 1) = secmcatname(imeas)
 ActiveSheet.Cells(irow, 2) = secmname(imeas)
 ActiveSheet.Cells(irow, 3) = secmsave(imeas)
 ActiveSheet.Cells(irow, 4) = secmcost(imeas)
 ActiveSheet.Cells(irow, 5) = secmPV(imeas) '
 ActiveSheet.Cells(irow, 6) = secmval(imeas)
 ActiveSheet.Cells(irow, 7) = secmval(imeas) - secmPV(imeas)
 ActiveSheet.Cells(irow, 8) = secmecost(imeas)
 ActiveSheet.Cells(irow, 9) = secmbcratio(imeas) 'Levelized cost including admin
 ActiveSheet.Cells(irow, 10) = secmpayback(imeas)
 ActiveSheet.Cells(irow, 11) = secmtabname(imeas)
 ActiveSheet.Cells(irow, 12) = secmweights(imeas) 'Simple Payback
 ActiveSheet.Cells(irow, 13) = secmwgtdsave(imeas) 'Weighted Savings
 ActiveSheet.Cells(irow, 14) = secmwgtdcost(imeas) 'Weighted first cost
 irow = irow + 1
 Next imeas
 lastmeasrow = irow - 1
 lastcol = 15
'Sort
 If MeasSortFlag = 1 Then
 Range(Cells(firstmeasrow, 1), Cells(lastmeasrow, lastcol)).Sort _
 key1:=Cells(firstmeasrow, msortcol), Order1:=xlAscending, header:=xlNo
' Find first non-negative value and resort.
 i = 0
 Cells(firstmeasrow - 1, msortcol).Activate
 Do
 ActiveCell.Offset(1, 0).Activate
 i = i + 1
 Loop Until ActiveCell >= 0 Or i = NSecMeas
 Range(Cells(firstmeasrow + i - 1, 1), Cells(lastmeasrow, lastcol - 1)).Sort _
 key1:=Cells(firstmeasrow, msortcol), Order1:=xlDescending, header:=xlNo
'
 ElseIf MeasSortFlag = 2 Or MeasSortFlag = 3 Then
 Range(Cells(firstmeasrow, 1), Cells(lastmeasrow, lastcol)).Sort _
 key1:=Cells(firstmeasrow, msortcol), Order1:=xlAscending, header:=xlNo
 End If
'Calculate Cumulative Results for supply curve
 Cells(firstmeasrow, 15).Value = Cells(firstmeasrow, 13).Value
 irow = firstmeasrow
 For imeas = 1 To NSecMeas - 1
 irow = irow + 1
 Cells(irow, 15).Value = Cells(irow, 13).Value + Cells((irow - 1), 15).Value
 Next imeas
'Format results
 If SecSave(1) < 10 Then
 Range(Cells(firstmeasrow, 3), Cells(lastmeasrow, lastcol)).NumberFormat = "0.00"
 Else
 Range(Cells(firstmeasrow, 3), Cells(lastmeasrow, lastcol)).NumberFormat = "0"
 End If
 Range(Cells(firstmeasrow, 8), Cells(lastmeasrow, 8)).NumberFormat = "0.0"
 Range(Cells(firstmeasrow, 9), Cells(lastmeasrow, 9)).NumberFormat = "0.00"
 Range(Cells(firstmeasrow, 10), Cells(lastmeasrow, 10)).NumberFormat = "0.0"
 Range(Cells(firstmeasrow, 11), Cells(lastmeasrow, 11)).NumberFormat = "0.00"
 Cells(firstmeasrow, 9).Activate
 For i = 1 To NSecMeas
 If ActiveCell >= 1 Or ActiveCell < 0 Then
 ActiveCell.Font.ColorIndex = 5 '5=blue
 Else
 ActiveCell.Font.ColorIndex = 3 '3=red
 End If
 ActiveCell.Offset(1, 0).Activate
 Next i

 End If

End Sub

'***
Sub LoadMeasData()
 Application.StatusBar = "Reading Measure Data..."
 Dim i, r, c, k, imeas, icat As Integer
 Dim t1 As String

 nmeas = 0
' ActiveWorkbook.Sheets(1).Select
 'Sheets("ProData").Select

' Locate data header.
 i = 1
 Do Until ActiveSheet.Cells(i, catcol) = "Category Name"
 i = i + 1
 If i > 100 Then
 MsgBox "Can't find 'Category Name' header on tab " & ActiveSheet.Name _
 & ". Data has to start in first 100 rows.", 16, "Can't Find Data"
 'Exit Sub
 End
 End If
 Loop
 startrow = i

 'Test for non-blank measure name. Allow gap to start of data.
 i = i + 1
 Do Until Trim$(ActiveSheet.Cells(i, catcol)) <> ""
 t1 = Trim$(ActiveSheet.Cells(i, catcol))
 i = i + 1
 If i > startrow + 100 Then
 MsgBox "Can't find non-blank measure names on tab " & ActiveSheet.Name _
 & " Data has to start in first 100 rows after category header", 16, "Can't Find Data"
 'Exit Sub
 End
 End If
 Loop
 startrow = i - 1 'row before start of measures

' Determine End row for measure data
 i = startrow + 1
 Do Until Trim$(ActiveSheet.Cells(i, namcol)) = ""
 i = i + 1
 Loop
 endrow = i - 1 'row of last measure

 nmeas = endrow - startrow
 If nmeas <= 0 Then
 MsgBox "No measures for tab " & ActiveSheet.Name, 16, "No Measures"
 'Exit Sub
 End
 End If

'Count measures at sector program level
 NSecMeas = NSecMeas + nmeas

 ReDim msave(1 To nmeas)
 ReDim mname(1 To nmeas)
 ReDim mcost(1 To nmeas)
 ReDim mlife(1 To nmeas)
 ReDim mom(1 To nmeas)
 ReDim mval(1 To nmeas)
 ReDim shape_ptr(1 To nmeas)
 ReDim PVmeas(1 To nmeas)
 ReDim measPVadmin(1 To nmeas)
 ReDim ecostmeas(1 To nmeas)
 ReDim ecostmeas2(1 To nmeas)
 ReDim mcatname(1 To nmeas)
 ReDim catstart(1 To nmeas)
 ReDim catend(1 To nmeas)
 ReDim nerv(1 To nmeas)
 ReDim PVExt(nmeas), Capac(nmeas), PVTD(nmeas), PVNerv(nmeas), PVAct(nmeas)
 ReDim pomper(maxpom, nmeas), pomcost(maxpom, nmeas)

'Load measure names
 For i = 1 To nmeas
 mname(i) = ActiveSheet.Cells(i + startrow, namcol)
 Next i

'Load measure savings and adjust for losses
 For i = 1 To nmeas
 msave(i) = ActiveSheet.Cells(i + startrow, Savcol)
 msave(i) = msave(i) * (1 + TDLossFac)
 Next i

'Load measure costs
 For i = 1 To nmeas
 mcost(i) = ActiveSheet.Cells(i + startrow, costcol)
'JPH 8/7/95 adjust costs for deflator. Delete when costs are fully updated.
 mcost(i) = mcost(i) * CostDefl
 Next i

'Load measure lives
 For i = 1 To nmeas
 mlife(i) = ActiveSheet.Cells(i + startrow, lifecol)
 Next i

'Load measure O&M
 For i = 1 To nmeas
 mom(i) = ActiveSheet.Cells(i + startrow, omcol)
 Next i

'Load Shape Pointer
 For i = 1 To nmeas
 shape_ptr(i) = ActiveSheet.Cells(i + startrow, ptrcol)
 Next i

'Load measure Non-Energy Related Value
 For i = 1 To nmeas
 nerv(i) = ActiveSheet.Cells(i + startrow, nervcol)
 Next i

'Load measure periodic O&M values. Assumes immed to right of nerv
 For i = 1 To nmeas
 For k = 1 To maxpom
 pomcost(k, i) = ActiveSheet.Cells(i + startrow, nervcol + 2 * (k - 1) + 1)
 pomper(k, i) = ActiveSheet.Cells(i + startrow, nervcol + 2 * (k - 1) + 2)
 Next k
 Next i

'Read category names
 For i = 1 To nmeas
 mcatname(i) = Trim(ActiveSheet.Cells(i + startrow, catcol))
 Next i

 If mcatname(1) = "" Then
 MsgBox "The first measure on tab " & ActiveSheet.Name & " needs a category name.", 16, "No Category Name"
 End
 End If

'Fill empty slots. One category name for each measure.
 For i = 2 To nmeas
 If mcatname(i) = "" Then mcatname(i) = mcatname(i - 1)
 Next i

'Parse categories

 ReDim catname(1 To nmeas) 'probably won't use all of these but don't know ncat at this point
 ReDim catmap(1 To nmeas)
 ncat = 1
 catname(1) = mcatname(1)
 catmap(1) = 1

 For imeas = 2 To nmeas
 For icat = 1 To ncat
 If UCase(mcatname(imeas)) = UCase(catname(icat)) Then
 catmap(imeas) = icat
 mcatname(imeas) = catname(icat)
 GoTo FoundMatch
 End If
 Next icat

 'If fall thru to here, no match found in category names, add a new one
 ncat = ncat + 1
 catname(ncat) = mcatname(imeas)
 catmap(imeas) = ncat

FoundMatch:

 Next imeas

 ReDim pvcat(ncat)
 ReDim savecat(ncat)
 ReDim ecostcat(ncat)
 ReDim valcat(ncat)
 ReDim bccat(ncat)
 ReDim fccat(ncat)

 Application.StatusBar = ""

End Sub

'***
Sub ProCost(iset)
 Application.StatusBar = "Running ProCost on " & DoTabs(iset) & "..."
'Local Variables

 Dim pl, fl, nl, pa, pa1, pa2, ap1, ap2, norm_fac, rd, disc As Single
 Dim inst, remain, ispons, imeas, isecmeas, icat, yrout, i, yr, ipom, InstYear As Integer
 Dim POMinst, nPOMinst As Integer 'JPH 7/25/95
 Dim pvisfac, pvis, capspent, amort, pvfac_short As Single
 Dim RealEsc, pvss, yrreal, xl, yl, shr, Val, annu As Single
 Dim PeakSav, PeakHrs, ECredit, TCredit, NECredit, ActCredit, tot As Single
 Dim normalized_life, FinalYr As Integer
 Dim utilom(minyr To maxyr), custom(minyr To maxyr) As Single
 Dim std, x As Single

 ReDim pvom(nmeas)
 ReDim ninst(nmeas)
 ReDim pvmeas_spons(nmeas, nspons), pvcapmeas_spons(nmeas, nspons)
 ReDim pvom_spons(nmeas, nspons), pv_utilom(nmeas), pv_custom(nmeas)
 ReDim ecost_spons(nmeas, nspons)
 ReDim mnetben(nmeas), mbcratio(nmeas)
 ReDim xmean(nmeas), xmean2(nmeas), savprob(nmeas), mcesav(nmeas)
 ReDim probcat(ncat), catmean(ncat), catcesav(ncat)
 ReDim ProName(10), ProSave(10), ProPV2(10), ProPV1(10), ProFC(10), ProLvl(10), ProAdmin(10), ProBen(10), ProRatio(10), ProAvg(10)

 ReDim Preserve secmtabname(NSecMeas)
 ReDim Preserve secmcatname(NSecMeas)
 ReDim Preserve secmname(NSecMeas)
 ReDim Preserve secmsave(NSecMeas)
 ReDim Preserve secmcost(NSecMeas)
 ReDim Preserve secmval(NSecMeas)
 ReDim Preserve secmPV(NSecMeas)
 ReDim Preserve secmadmin(NSecMeas)
 ReDim Preserve secmPVadmin(NSecMeas)
 ReDim Preserve secmecost(NSecMeas)
 ReDim Preserve secmecost2(NSecMeas)
 ReDim Preserve secmbcratio(NSecMeas)
 ReDim Preserve secmpayback(NSecMeas)
 ReDim Preserve secmweights(NSecMeas)
 ReDim Preserve secmwgtdsave(NSecMeas)
 ReDim Preserve secmwgtdcost(NSecMeas)
 ReDim Preserve secmwgtdPVadmin(NSecMeas)

 PeakHrs = 744 * (50 / 168) 'Average January hours in peak segment

'--
' Program level parameters.
'--
 normalized_life = 40
 pl = major_phys_life
 nl = normalized_life
 disc = (1# + RealDisc) * (1# + Infl) - 1#
' ExtraD = ((1 + disc) / (1 + Infl)) ^ (InservYr - PVTZero - 1) 'extra real discounting between PVTZero & inservice
 ExtraD = (1 + RealDisc) ^ (InservYr - PVTZero) 'JPH 7/26/95 extra real discounting between PVTZero & inservice
 ediscfac = ((1# + disc) ^ pl - 1#) / (disc * (1# + disc) ^ pl) 'energy present worth factor
 FinalYr = InservYr + major_phys_life - 1

'--
' Calculate conversion factor from nominal levelized at major phys
' life to nom levelized at normalized life. (eg. 40 yrs)
' Currently not used - if Implemented - Check for zero discount rate trap:
'--
 rd = RealDisc
 pa1 = ((1# + disc) ^ pl - 1#) / (disc * (1# + disc) ^ pl)
 pa2 = ((1# + rd) ^ nl - 1#) / (rd * (1# + rd) ^ nl)
 ap1 = (rd * (1# + rd) ^ pl) / ((1# + rd) ^ pl - 1#)
 ap2 = (disc * (1# + disc) ^ nl) / ((1# + disc) ^ nl - 1#)
 norm_fac = pa1 * ap1 * pa2 * ap2

 For imeas = 1 To nmeas ' subprogram measure loop

'---
' Calculate the number of installations, including the
' original, for this measure.
'---
 inst = Int(major_phys_life / mlife(imeas))
 remain = major_phys_life Mod mlife(imeas)
 If (remain >= 1#) Then inst = inst + 1
 ninst(imeas) = inst

'---
' Calculate benefits over program total life
'---
 If Not PVOnly Then CalcBen InservYr, msave(imeas), shape_ptr(imeas), _
 major_phys_life, mval(imeas), PeakSav, imeas 'JPH 7/17/95

'---
' Calculate PV of externalities, T&D, and Non-E credits.
' Done over physical life.
' Use Jan segment 1 savings for T&D credit.
'---
 Capac(imeas) = PeakSav / PeakHrs 'KW
 For yr = InservYr To InservYr + pl - 1

 Val = msave(imeas) * ExtCred * Deflator(yr) / 1000 '$
 PVExt(imeas) = PVExt(imeas) + Val / DiscFac(yr)

 Val = Capac(imeas) * TDCred * Deflator(yr)
 PVTD(imeas) = PVTD(imeas) + Val / DiscFac(yr)

 Val = nerv(imeas) * Deflator(yr)
 PVNerv(imeas) = PVNerv(imeas) + Val / DiscFac(yr)

 Next yr
 PVExt(imeas) = -1 * PVExt(imeas)
 PVTD(imeas) = -1 * PVTD(imeas)
 PVNerv(imeas) = -1 * PVNerv(imeas)

'---
' Calc measure annual O&M over program life
'---
 For yr = InservYr To FinalYr
 Val = mom(imeas) * (1# + Infl) ^ (yr - CostRef)
 If yr < InservYr + UOMYr Then
 utilom(yr) = Val * UOMShr
 custom(yr) = Val * (1 - UOMShr)
 Else
 utilom(yr) = 0
 custom(yr) = Val
 End If
 Next yr

'---
' Add periodic O&M. Assumes periods are specified with respect to
' measure life, not program life.
'---
 For inst = 1 To ninst(imeas)
 InstYear = InservYr + mlife(imeas) * (inst - 1)
 For ipom = 1 To maxpom
 If pomcost(ipom, imeas) <> 0 And _
 pomper(ipom, imeas) > 0 And pomper(ipom, imeas) <= mlife(imeas) Then

'JPH 7/25/95 This section has been modified to reflect two different ways of handling periodic O&M
' The first (POM_flag=1) assumes that the period data refers to the actual year after installation
' that the replacement occurs and is not repeated until the measure is re-installed. The second
' (POM_flag=2) assumes that the period data is for a repeating cycle of O&M costs within the measure life.

 If POM_flag = 1 Then

 yr = InstYear + pomper(ipom, imeas) - 1 'if period is 1, it happens in first year of installation
 If yr <= FinalYr Then
 Val = pomcost(ipom, imeas) * (1# + Infl) ^ (yr - CostRef)
 If yr < InservYr + UOMYr Then
 utilom(yr) = utilom(yr) + Val * UOMShr
 custom(yr) = custom(yr) + Val * (1 - UOMShr)
 Else
 custom(yr) = custom(yr) + Val
 End If
 End If 'yr < Finalyr

 ElseIf POM_flag = 2 Then

 nPOMinst = Int(mlife(imeas) / pomper(ipom, imeas))
 remain = mlife(imeas) Mod pomper(ipom, imeas)
 If (remain >= 1#) Then nPOMinst = nPOMinst + 1
 For POMinst = 1 To nPOMinst
 yr = InstYear + POMinst * pomper(ipom, imeas)
 If yr <= FinalYr Then
 Val = pomcost(ipom, imeas) * (1# + Infl) ^ (yr - CostRef)
 If yr < InservYr + UOMYr Then
 utilom(yr) = utilom(yr) + Val * UOMShr
 custom(yr) = custom(yr) + Val * (1 - UOMShr)
 Else
 custom(yr) = custom(yr) + Val
 End If 'utility/customer shares
 End If 'yr < Finalyr
 Next POMinst

 End If 'POM_flag

 End If 'cost <> 0, etc.
 Next ipom
 Next inst

'---
' O&M PV
'---
 For yr = InservYr To InservYr + pl - 1
 pv_utilom(imeas) = pv_utilom(imeas) + utilom(yr) / DiscFac(yr)
 pv_custom(imeas) = pv_custom(imeas) + custom(yr) / DiscFac(yr)
 Next yr

'Remove extra real discounting
 pv_utilom(imeas) = pv_utilom(imeas) * ExtraD
 pv_custom(imeas) = pv_custom(imeas) * ExtraD
 PVExt(imeas) = PVExt(imeas) * ExtraD
 PVTD(imeas) = PVTD(imeas) * ExtraD
 PVNerv(imeas) = PVNerv(imeas) * ExtraD

'---
' Sponsor loop
' Each utilities is treated as if 100% share of utility
' portion of costs. Utility weights are applied later.
' Customer costs (last sponsor array position) are
' tracked explicitly.
'---

 For ispons = 1 To nspons 'sponsor loop

 If ispons <> nspons And sponshare(ispons) = 0 Then GoTo NoShare

'---
' Calculate sponsor specific present worth factors.
'---
 fl = finlife(ispons)
 If (disc <> 0 And fl > 0) Then ' JPH 7/25/95 trap for zero discount rate
 pvisfac = crf(ispons) * ((1# + disc) ^ fl - 1#) / (disc * (1# + disc) ^ fl)
 Else
 pvisfac = crf(ispons) * fl
 End If

'---
' For each full installation, calculate the present value
' of capital revenue requirements.
'---

 For inst = 1 To ninst(imeas)
 yrout = (inst - 1) * mlife(imeas) 'years beyond first installation
 yrreal = yrout
 If yrreal > 20 Then yrreal = 20 'limit real escalation to 20 years.
 capspent = mcost(imeas) * (1# + RealEsc) ^ yrreal * (1# + Infl) ^ yrout
 If (yrout + mlife(imeas) <= pl) Then
'--
' Full Installation
'--
 pvis = capspent * pvisfac
 Else
'---
' Partial installation
' Because of differences in physical and
' financial lives, the capital costs need to be
' levelized over the physical life of the measure
' before counting the partial stream of cash flows.
'---
 xl = mlife(imeas)
 yl = pl - yrout
 amort = capspent * pvisfac / (((1# + disc) ^ xl - 1#) / (disc * (1 + disc) ^ xl))
 pvfac_short = ((1# + disc) ^ yl - 1#) / (disc * (1 + disc) ^ yl)
 pvis = amort * pvfac_short
 End If

'--
' PVIS holds pv for cost of this installation to point of
' installation. Take PV back to PV time zero and adjust
' for utility/customer participartion.
'--
 i = inst
 If i > 4 Then i = 4
 If ispons < nspons Then 'split between participating utilities
 shr = UShare(i) * sponshare(ispons)
 ElseIf ispons = nspons Then 'customer gets all non-util share
 shr = 1 - UShare(i)
 End If
 pvss = (pvis * shr) / (1 + disc) ^ (InservYr + yrout - PVTZero)

 pvcapmeas_spons(imeas, ispons) = pvcapmeas_spons(imeas, ispons) + pvss

 Next inst 'Installation Loop

'--
' For capital, remove any real discounting
' between PV time zero and inservice date.
'--
 pvcapmeas_spons(imeas, ispons) = pvcapmeas_spons(imeas, ispons) * ExtraD

'---
' Assign O&M components.
'---
 If ispons < nspons Then
 pvom_spons(imeas, ispons) = pv_utilom(imeas) * sponshare(ispons)
 ElseIf ispons = nspons Then
 pvom_spons(imeas, ispons) = pv_custom(imeas)
 End If

'---
' Accumulate sponsor affected measure totals.
'---
 PVmeas(imeas) = PVmeas(imeas) _
 + pvom_spons(imeas, ispons) + pvcapmeas_spons(imeas, ispons)

NoShare:

 Next ispons 'End of sponsor loop

'--
' At this point, all capital & OM for each sponsor have been calculated.
' Total externality, T&D, and Non-E Credits were calculated above first
' sponsor loop. Calculate Act C-E credit, and allocate all credits to
' sponsors based on share of total PV capital and O&M. (Currently in pvmeas)
'--
 tot = PVmeas(imeas) + PVExt(imeas) + PVTD(imeas) + PVNerv(imeas)
 PVAct(imeas) = Abs(tot * CECred) * -1 ' JPH 6/15/95 need abs funct. for cases where PV is negative

 For ispons = 1 To nspons

 If PVmeas(imeas) <> 0 Then

 shr = (pvom_spons(imeas, ispons) + pvcapmeas_spons(imeas, ispons)) _
 / PVmeas(imeas)

 ECredit = PVExt(imeas) * shr
 TCredit = PVTD(imeas) * shr
 NECredit = PVNerv(imeas) * shr
 ActCredit = PVAct(imeas) * shr

 pvmeas_spons(imeas, ispons) = _
 pvcapmeas_spons(imeas, ispons) + pvom_spons(imeas, ispons) _
 + ECredit + TCredit + NECredit + ActCredit
 Else
 pvmeas_spons(imeas, ispons) = 0
 End If

'---
' Calculate measure levelized enegy cost.
'---

 If (msave(imeas) <> 0#) Then
 ecost_spons(imeas, ispons) = pvmeas_spons(imeas, ispons) * 1000 _
 / (msave(imeas) * ediscfac)
 Else
 ecost_spons(imeas, ispons) = 0#
 End If

 Next ispons

'---
' Adjust measure total PV for credits and calculate total levelized cost.
' Calculate alternate level. cost using admin at the measure level
'---
 PVmeas(imeas) = PVmeas(imeas) + PVExt(imeas) + PVTD(imeas) + PVNerv(imeas) + PVAct(imeas)
 If AdminFlag = 1 Then PVmeas(imeas) = PVmeas(imeas) + mcost(imeas) * Adminrate ' JPH 05/17/96 Add admin at measure level option.

 If (msave(imeas) <> 0#) Then
 ecostmeas(imeas) = PVmeas(imeas) * 1000 / (msave(imeas) * ediscfac)
 Else
 ecostmeas(imeas) = 0#
 End If

 If AdminFlag <> 1 Then
 ecostmeas2(imeas) = (PVmeas(imeas) + mcost(imeas) * Adminrate) * 1000 / (msave(imeas) * ediscfac)
 Else
 ecostmeas2(imeas) = ecostmeas(imeas)
 End If
'---
' Compute measure net benefits and B/C ratio
'---
 mnetben(imeas) = mval(imeas) - PVmeas(imeas)
 If PVmeas(imeas) <> 0 Then
 mbcratio(imeas) = mval(imeas) / PVmeas(imeas)
 Else
 mbcratio(imeas) = 0
 End If
'---
' Compute measure distribution of cost with a B/C ratio of >=1.00
'---
 std = PVmeas(imeas) * CoV
 If std < 0 Then std = -1 * std

 If Not PVOnly Then
 savprob(imeas) = Application.NormDist(mval(imeas), PVmeas(imeas), std, True)
 TailMean mval(imeas), PVmeas(imeas), std, xmean(imeas)
 If AdminFlag > 1 Then
 TailMean mval(imeas), PVmeas(imeas), std, xmean2(imeas)
 End If
 mcesav(imeas) = savprob(imeas) * msave(imeas)
 Else
 savprob(imeas) = 0
 mcesav(imeas) = 0
 End If
'---
' If a PVOnly run, fill cost only arrays
'---
 If PVOnly Then PVCostOnly(imeas, iset) = PVmeas(imeas)
'---
' Load Sector Level Program Measure arrays
'---
 isecmeas = NSecMeas - nmeas + imeas
 secmtabname(isecmeas) = DoTabs(iset)
 secmcatname(isecmeas) = mcatname(imeas)
 secmname(isecmeas) = mname(imeas)
 secmsave(isecmeas) = msave(imeas)
 secmcost(isecmeas) = mcost(imeas) '
 secmval(isecmeas) = mval(imeas)
 secmPV(isecmeas) = PVmeas(imeas)
 secmadmin(isecmeas) = Adminrate * mcost(imeas) '
 secmPVadmin(isecmeas) = PVmeas(imeas) + Adminrate * mcost(imeas)
 secmecost(isecmeas) = ecostmeas(imeas)
 secmecost2(isecmeas) = ecostmeas2(imeas) 'Levelized cost including admin
 secmbcratio(isecmeas) = mbcratio(imeas)
 secmpayback(isecmeas) = mcost(imeas) / (msave(imeas) * Rate) 'Simple Payback
 secmweights(isecmeas) = TabWeight(iset)
 secmwgtdsave(isecmeas) = msave(imeas) * TabWeight(iset) 'Weighted Savings
 secmwgtdcost(isecmeas) = mcost(imeas) * TabWeight(iset) 'Weighted first cost
 secmwgtdPVadmin(isecmeas) = (PVmeas(imeas) + Adminrate * mcost(imeas)) * TabWeight(iset) 'Weighted Cost

 Next imeas 'End of measure loop

'Set PVOnly measure count variable
 NCostOnly(iset) = nmeas

'---
' Calculate subtotals by category.
'---
 For imeas = 1 To nmeas
 icat = catmap(imeas)

' JPH 05/17/96 Add admin at category option.
 If ProgCatFilterFlag And (PVmeas(imeas) > mval(imeas)) Then GoTo skipmeas2
 If AdminFlag = 2 Then
 pvcat(icat) = pvcat(icat) + PVmeas(imeas) + mcost(imeas) * Adminrate
 Else
 pvcat(icat) = pvcat(icat) + PVmeas(imeas)
 End If
 savecat(icat) = savecat(icat) + msave(imeas)
 valcat(icat) = valcat(icat) + mval(imeas)
 fccat(icat) = fccat(icat) + mcost(imeas)
skipmeas2:
 Next imeas

 For icat = 1 To ncat
 If savecat(icat) <> 0 Then
 ecostcat(icat) = pvcat(icat) * 1000 / (savecat(icat) * ediscfac)
 Else
 savecat(icat) = 0
 ecostcat(icat) = 0
 End If
 If pvcat(icat) <> 0 Then
 bccat(icat) = valcat(icat) / pvcat(icat)
 Else
 pvcat(icat) = 0
 bccat(icat) = 0
 End If

'---
' Compute category distribution of cost with a B/C ratio of >=1.00
'---
 If Not PVOnly And (pvcat(icat) <> 0) Then
 std = pvcat(icat) * CoV
 If std < 0 Then std = -1 * std
 probcat(icat) = Application.NormDist(valcat(icat), pvcat(icat), std, True)
 TailMean valcat(icat), pvcat(icat), std, catmean(icat)
 catcesav(icat) = probcat(icat) * savecat(icat)
 Else
 valcat(icat) = 0
 probcat(icat) = 0
 catmean(icat) = 0
 catcesav(icat) = 0
 End If
 Next icat

'---
' Program totals. Aggregate values for all categories with B/C >=1
'---
 For i = 1 To 9
 ProSave(i) = 0
 ProBen(i) = 0
 ProPV1(i) = 0
 ProFC(i) = 0
 ProRatio(i) = 0
 Next i

'---
' Calculate totals by measure.
'---
 ProName(1) = "Measures with B/C>1.00"
 For i = 1 To nmeas
 If PVmeas(i) <= mval(i) Then 'catches negative B/C ratios
 ProSave(1) = ProSave(1) + msave(i)
 ProBen(1) = ProBen(1) + mval(i)
 ProPV1(1) = ProPV1(1) + PVmeas(i)
 ProFC(1) = ProFC(1) + mcost(i)
 End If
 Next i

'---
' Calculate totals by category.
'---
 ProName(2) = "Categories with B/C>1.00"
 For icat = 1 To ncat
 If pvcat(icat) <= valcat(icat) Then 'catches negative B/C ratios
 ProSave(2) = ProSave(2) + savecat(icat)
 ProBen(2) = ProBen(2) + valcat(icat)
 ProPV1(2) = ProPV1(2) + pvcat(icat)
 ProFC(2) = ProFC(2) + fccat(icat)

 End If
 Next icat

'---
' Calculate totals for portion distribution with B/C > 0.
'---
 ProName(3) = "% of Measures with B/C >1.00"
 For i = 1 To nmeas
 ProSave(3) = ProSave(3) + msave(i) * savprob(i)
 ProBen(3) = ProBen(3) + mval(i) * savprob(i)
 If AdminFlag > 1 Then
 ProPV1(3) = ProPV1(3) + xmean2(i)
 Else
 ProPV1(3) = ProPV1(3) + xmean(i)
 End If
 If PVmeas(i) <> 0 Then
 ProFC(3) = ProFC(3) + mcost(i) * (xmean(i) / PVmeas(i))
 Else
 ProFC(3) = 0
 End If
 Next i

'---
' Calculate totals for a program with measures+admin < 10 mills.
'---
 ProName(4) = "Block 1: x <=10 m/kWh"
 ProName(5) = "Block 2: 10< x <=20 m/kWh"
 ProName(6) = "Block 3: 20< x <=30 m/kWh"
 ProName(7) = "Block 4: 30< x <=40 m/kWh"
 ProName(8) = "Block 5: 40< x <=50 m/kWh"
 ProName(9) = "Block 6: 50< x <=60 m/kWh"
 ProName(10) = "Block 7: 60< x m/kWh"

 For imeas = 1 To nmeas
 If ecostmeas2(imeas) <= 10 Then
 ProSave(4) = ProSave(4) + msave(imeas)
 ProBen(4) = ProBen(4) + mval(imeas)
 ProPV1(4) = ProPV1(4) + PVmeas(imeas)
 ProFC(4) = ProFC(4) + mcost(imeas)
 ElseIf (ecostmeas2(imeas) > 10) And (ecostmeas2(imeas) <= 20) Then
 ProSave(5) = ProSave(5) + msave(imeas)
 ProBen(5) = ProBen(5) + mval(imeas)
 ProPV1(5) = ProPV1(5) + PVmeas(imeas)
 ProFC(5) = ProFC(5) + mcost(imeas)
 ElseIf (ecostmeas2(imeas) > 20) And (ecostmeas2(imeas) <= 30) Then
 ProSave(6) = ProSave(6) + msave(imeas)
 ProBen(6) = ProBen(6) + mval(imeas)
 ProPV1(6) = ProPV1(6) + PVmeas(imeas)
 ProFC(6) = ProFC(6) + mcost(imeas)
 ElseIf (ecostmeas2(imeas) > 30) And (ecostmeas2(imeas) <= 40) Then
 ProSave(7) = ProSave(7) + msave(imeas)
 ProBen(7) = ProBen(7) + mval(imeas)
 ProPV1(7) = ProPV1(7) + PVmeas(imeas)
 ProFC(7) = ProFC(7) + mcost(imeas)
 ElseIf (ecostmeas2(imeas) > 40) And (ecostmeas2(imeas) <= 50) Then
 ProSave(8) = ProSave(8) + msave(imeas)
 ProBen(8) = ProBen(8) + mval(imeas)
 ProPV1(8) = ProPV1(8) + PVmeas(imeas)
 ProFC(8) = ProFC(8) + mcost(imeas)
 ElseIf (ecostmeas2(imeas) > 50) And (ecostmeas2(imeas) <= 60) Then
 ProSave(9) = ProSave(9) + msave(imeas)
 ProBen(9) = ProBen(9) + mval(imeas)
 ProPV1(9) = ProPV1(9) + PVmeas(imeas)
 ProFC(9) = ProFC(9) + mcost(imeas)
 ElseIf (ecostmeas2(imeas) > 60) Then
 ProSave(10) = ProSave(10) + msave(imeas)
 ProBen(10) = ProBen(10) + mval(imeas)
 ProPV1(10) = ProPV1(10) + PVmeas(imeas)
 ProFC(10) = ProFC(10) + mcost(imeas)
 End If

 Next imeas

'---
' Calc Admin as % of first cost, and calc new totals.
'---
 For i = 1 To 10
 ProAdmin(i) = Adminrate * ProFC(i)
 If ((i = 2 And AdminFlag = 2) Or AdminFlag = 1) Then 'If admin already included at measure level or already included at category level for category program, do not add again
 ProPV2(i) = ProPV1(i)
 Else
 ProPV2(i) = ProPV1(i) + ProAdmin(i)
 End If
 If ProPV2(i) <> 0 Then ProRatio(i) = ProBen(i) / ProPV2(i)
 If ProSave(i) <> 0 Then
 ProLvl(i) = ProPV2(i) * 1000 / (ProSave(i) * ediscfac)
 ProAvg(i) = ProPV2(i) / (ProSave(i) / 8760)
 Else
 ProLvl(i) = 0
 ProAvg(i) = 0
 End If
 Next i

'---
' Load measure data into Sector Level Program arrays
'---
 For i = 1 To 10
 If ProSave(i) > 0 Then
 SecTotal(i) = SecTotal(i) + TabWeight(iset)
 End If
 SecSave(i) = SecSave(i) + ProSave(i) * TabWeight(iset)
 SecBen(i) = SecBen(i) + ProBen(i) * TabWeight(iset)
 SecPV1(i) = SecPV1(i) + ProPV1(i) * TabWeight(iset)
 SecFC(i) = SecFC(i) + ProFC(i) * TabWeight(iset)
 Next i

End Sub

'***
Sub NameTest()
 Dim nm, i, r As Variant
 Dim ntext(10), nform(10) As String
 Dim idx(10) As Integer
 Dim Val(10) As Variant
 Sheets("Data1").Select

 i = 1
' For Each nm In ActiveSheet.Names
 For Each nm In ActiveWorkbook.Names
 ntext(i) = nm.Name
 nform(i) = nm.RefersTo
 idx(i) = nm.Index
' Cells(i, 15).Value = "'" & nm.RefersTo
 i = i + 1
 Next

End Sub
'***

Sub Format_Header(irow, icol, txcolor, patcolor, grid)
 Range(Cells(irow, 1), Cells(irow, icol)).Select
 Selection.Font.ColorIndex = txcolor
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .WrapText = True
 .Orientation = xlHorizontal
 End With
 With Selection.Interior
 .ColorIndex = patcolor
 .Pattern = xlSolid
 End With
 Selection.Borders(xlLeft).LineStyle = xlNone
 Selection.Borders(xlRight).LineStyle = xlNone
 Selection.Borders(xlTop).LineStyle = xlNone
 Selection.Borders(xlBottom).LineStyle = xlNone
 Selection.BorderAround Weight:=xlThin, ColorIndex:=xlAutomatic

 If grid Then
 With Selection.Borders(xlRight)
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 End If

End Sub

'***
Sub TailMean(x, mean, std, xmean)
'Calculates mean of a portion of a normal distribution from x-4std to x.

 Const nbin = 20
 Dim i As Integer
 Dim segp(0 To nbin), segx(0 To nbin) As Single
 Dim minx, binwidth, sump, sumx, x2 As Single

 minx = mean - 4 * std
 binwidth = (x - minx) / nbin
 segx(0) = minx
 segp(0) = 0
 sump = 0
 sumx = 0

'Find cumprobs at bin edges
 For i = 1 To nbin
 segx(i) = segx(i - 1) + binwidth
 segp(i) = Application.NormDist(segx(i), mean, std, True)
 Next i

'Calc prob wted value using bin midpoints.
 For i = 1 To nbin
 x2 = (segx(i - 1) + segx(i)) / 2
 sumx = sumx + x2 * (segp(i) - segp(i - 1))
 sump = sump + (segp(i) - segp(i - 1))
 Next i

 If sump <> 0 Then
 xmean = sumx / sump
 Else xmean = 0
 End If
End Sub

'***
Sub Locate(Filenum, LocString, Length, startcol, Passtring, iend)
'---
' Find record containing Stringt and return record in PassString
' Read pointer positioned at beginning of next record.
'---
' Dim Filenum, Length, StartCol As Integer
' Dim LocString As String

 iend = False
 Do While Not EOF(Filenum)
 Line Input #Filenum, Passtring
 If Mid$(Passtring, startcol, Length) = LocString Then
 Exit Sub
 End If
 Loop

'If here, hit end of file
 iend = True

End Sub

R:\DF\WW\96PLAN\APPNDIXG\APPNDXG7\APPNDXG7.DOC
�PAGE �

G7-� PAGE * MERGEFORMAT �14�
Appendix G7: Cost-Effectiveness Analysis Model - ProCost

