Jeffery C. Allen Chair Idaho

Ed Schriever Idaho

Doug Grob Montana

Mike Milburn Montana

KC Golden Vice Chair Washington

Thomas L (Les) Purce Washington

> Ginny Burdick Oregon

Louie Pitt, Jr. Oregon

July 5, 2023

MEMORANDUM

- TO: Council Members
- FROM: John Ollis
- SUBJECT: 2023 Puget Sound Energy Electric Progress Report

BACKGROUND:

- Presenter: Elizabeth Hossner, Manager of Planning and Analysis, PSE
- Summary: This presentation will summarize key findings from the 2023 Electric Progress Report from Puget Sound Energy (PSE).
- Relevance: The 2023 Electric Progress Report is the most recent planning exercise to determine how PSE will serve their customers' needs over the next 20 years. Due to increasing loads and changing Washington and federal policies, this progress report features increased future reliance on nonemitting resources and DERs and discusses options for addressing resource deliverability issues. Tracking and understanding where utilities are headed is critical to informing our mid-term assessment and next power plan.
- Workplan: Coordinate with regional utilities on integrated resource planning and other activities to share plan findings and leverage utility insights and advancements.
- More Info: Puget Sound Energy 2023 Electric Progress Report

PUGET SOUND

ENERGY

PSE

2023 Electric Progress Report

Elizabeth Hossner, Manager, Resource Planning and Analysis, PSE

June 26, 2023

	-	Resource Additions	2021 IRP		2023 Progress Report	
	×./.	(Nameplate MW)	2030	2040	2030	2040
		Demand Side Resources	758	1,221	618	1,094
		Conservation ¹	576	1,016	282	657
		Demand Response	182	206	336	437
	2023 Electric	Distributed Energy Resources ²	295	792	739	1,815
		DER Solar	260	723	552	1,567
	Progress Report	DER Storage	35	69	187	248
		Supply Side Resources	3,209	4,936	5,360	9,177
	Preferred Portfolio	CETA Compliant Peaking Capacity ³	255	729	711	985
		Capacity Contracts	979	979	0	0
		Wind	1,400	2,500	1,400	2,900
		Solar	400	498	699	1,894
		Green Direct	0	0	100	100
		Hybrid (Total Nameplate)	0	0	1,449	1,597
		Hybrid Wind	0	0	600	700
1.	Conservation in aMW includes energy efficiency, codes and standards, and distribution efficiency. Distributed Energy Resources (DER) stances and solar includes CEID stances and solar.	Hybrid Solar	0	0	400	398
2		Hybrid Storage	0	0	450	499
2.	additions, non-wires alternatives, distributed storage and solar additions, and net-	Biomass	0	30	0	0
З.	metering solar. CETA compliant peaking capacity is functionally similar to natural gas peaking capacity,	Nuclear	0	0	0	0
	but operates using non-emitting hydrogen or biodiesel fuel.	Standalone Storage	175	200	1,000	1,700
		Total	4,262	6,949	6,717	12,086
	10 June 2023				PSE PUGET SOUND ENERGY	

Range of annual emissions for preferred portfolio

- Includes CCA price in cost of dispatch for thermal resources and includes market sales and Transalta Coal Transition contract
- Decline in emissions after 2025 from Colstrip and Centralia PPA expiration at the end of 2025
- Decrease starting in 2030 through 2044 when natural gas and hydrogen fuel blending starts for existing and thermal resources
- Any remaining emissions in 2045 are due to emissions from unspecified market purchase
 - 15 June 2023

Improved access to reliable, clean energy	 measured by customers with access to distributed storage resources
Improved affordability of clean energy	measured by the total portfolio cost
Improved outdoor air quality	• measured by sulfur oxides, nitrogen oxides, and particulate matter generated per portfolio
Increase the number of jobs	measured by the number of estimated jobs generated for each portfolio
Increase participation in Programs	 measured by energy efficiency capacity added and the number of customers projected to participate in distributed energy resources and demand response programs
Reduced greenhouse gas emissions	\bullet measured by the total amount of $\mathrm{CO}_2\text{-}\mathrm{eq}$ generated per portfolio
Reduced peak demand	 measured by the decrease in peak demand achieved via demand response programs

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image>

Summary of how climate model data are used in the IRP Model Measurement Calculation Based on Time Period Energy - Electric and **Degree Days** 15 years actual + 15 Average Natural Gas years forward Peak - Electric Winter Hourly Temperature Median 15 years actual + 15 (1-in-2 chance) years forward Peak - Electric Summer Hourly Temperature Median 15 years actual + 15 (1-in-2 chance) years forward Peak - Natural Gas Utility 1-in-50 chance 2010 - 2049 **Daily Temperature** Individual years of climate model data were used in the Resource Adequacy model to analyze variability in temperatures and loads. PUGET June 2023 36 SOUND

Portfolio ID	Description	
11 A1	Combination of the following Portfolios: • Portfolio 3: Increase conservation by 284 aMW by 2045 • Portfolio 6: Added 400 MW MT East Wind + 200 MW MT PHES in 2026 • Portfolio 9: Nuclear added - 250 MW in 2032	
11 A2	Combination of the following Portfolios: • Portfolio 3: Increase conservation by 284 aMW by 2045 • Portfolio 6: Added 400 MW MT East Wind + 200 MW MT PHES in 2026 • Portfolio 8: Added 200 MW PNW PHES in 2026 • Portfolio 9: Nuclear added - 250 MW in 2032	
11 A3	Combination of the following: • Portfolio 3: Increase conservation by 284 aMW by 2045 • Portfolio 4: DER solar added - 30 MW/year from 2026-2045 • Portfolio 6: Added 400 MW MT East Wind + 200 MW MT PHES in 2026 • Portfolio 8: Added 200 MW PNW PHES in 2026 • Portfolio 9: Nuclear added - 250 MW in 2032	

Portfolio ID	Description	
11 A4	Combination of the following Portfolios: • Portfolio 3: Increase conservation by 284 aMW by 2045 • Portfolio 4: DER solar added - 30 MW/year from 2026-2045 • Portfolio 5: DER batteries added - 25 MW/year from 2026-2031 • Portfolio 6: Added 400 MW MT East Wind + 200 MW MT PHES in 2026 • Portfolio 8: Added 200 MW PNW PHES in 2026 • Portfolio 9: Nuclear added - 250 MW in 2032	
11 A5	Combination of the following: • Portfolio A4 (above) • Added all Demand Response programs	
11 A5, modified, may not run	 Updated A5 with the following: Advanced battery builds: 400 MW of 4hr Li-ion built in 2024/2025 instead of in 2025/2026 Delayed 1 biodiesel peaker build from 2024 to 2026 	

Combination of the following Portfolios (similar to 11 A1): • Portfolio 3: Increase conservation by 284 aMW by 2045 • Portfolio 6: Added 400 MW MT East Wind + 200 MW MT PHES in 2026
Combination of the following Portfolios (similar to 11 A5): • Portfolio 3: Increase conservation by 284 aMW by 2045 • Portfolio 4: DER solar added - 30 MW/year from 2026-2045 • Portfolio 5: DER batteries added - 25 MW/year from 2026-2031 • Portfolio 6: Added 400 MW MT East Wind + 200 MW MT PHES in 2026 • Portfolio 8: Added 200 MW PNW PHES in 2026 • Add All DR Programs

	CBI Metric	1 Reference	11 A5 Portfolio	11 B2
				Preferred Portfol
Portfolio CBI	22-year Cost with SCGHG (\$, Billions)	20.85	23.67	22.5
Metrics	GHG Emissions (Short Tons)	48,824,734	41,543,008	44,372,6
	SO ₂ Emissions (Short Tons)	28,841	28,836	28,7
	NO _x Emissions (Short Tons)	11,426	10,307	10,8
	PM Emissions (Short Tons)	9,036	8,873	8,9
	Jobs (Total)	45,736	40,757	43,7
	Energy Efficiency Added (MW)	695	818	8
	DR Peak Capacity (MW)	291	320	3
	DER Solar Participation			
	(Total New Participants)	12,115	83,903	87,4
	DR Participation (Total New Participants)	513,238	750,943	750,9
	DER Storage Participation (Total New Participants)	8,125	18,524	18,5

Hydrogen fuel risk

Preferred Portfolio:

• New blend hydrogen peakers start in 2039

Participant Concern:

What if PSE built peakers that will blend to full hydrogen but hydrogen is not available as planned?

Response:

- PSE would not start building a hydrogen peaker in 2035 if hydrogen supply is unavailable
- Benefits of a dual-fuel unit: biodiesel provides backup (reliability), the unit could run on biodiesel if hydrogen unavailable

Further Analysis:

June 2023

 Comparison of the emissions profile of a gas peaker in 2043, if it had to run on gas only, as compared to Colstrip and a CCCT of equal capacity.

