April 2, 2024

MEMORANDUM

TO: Council Members

FROM: Kevin Smit and Christian Douglass

SUBJECT: Updates on Conservation Program Elements

BACKGROUND:

Presenters: Kevin Smit and Christian Douglass

Summary: Staff will provide updates on the elements of the 2021 Power Plan’s conservation program to inform the 2021 Plan Mid-Term Assessment. The conservation program includes twenty specific conservation recommendations in total, including conservation targets, specific actions for utilities and the Regional Technical Forum (RTF), Model Conservation Standards, and more. Staff will summarize the progress to date of each conservation recommendation, as well as provide an overall status indicator of each. In addition to the summary updates, staff will discuss how conditions for energy efficiency have changed since adoption of the 2021 Plan, how specific parts of the region may value energy efficiency differently (consistent with the 2021 Power Plan recommendations), and how staff is leveraging recent regional data to inform the next plan.

Relevance: The Council is currently monitoring regional progress and changes relative to the 2021 Power Plan to keep the region updated on important recommendations in its Mid-Term Assessment. Staff anticipates working with the Power Committee to update the Mid-Term Assessment summary at the May meeting, based on new load forecast information and other regional insights. Staff is providing this update of another important
element of the 2021 Power Plan, the Conservation Program, to provide
the members additional information that they may want to consider in the
next Mid-Term Assessment update.

Workplan: A.1.1. Tracking and reporting on energy efficiency accomplishments relative
to the 2021 Power Plan Conservation Program and A.1.4. Tracking and
reporting on progress across other elements of the 2021 Power Plan,
including model conservation standards, research, etc.

Background: According to the Pacific Northwest Power Act, the Council’s power plan
shall include “an energy conservation program”, including specific
elements, such as model conservation standards and recommendations
for research and development. Per the Act, conservation is defined as any
reduction in electric power consumption as a result in increases in the
efficiency of energy use, production, or distribution.

The 2021 Power Plan’s conservation program, described in Section 5 of
the Plan document, included twenty individual recommendations in total.
These recommendations included items such as:

- conservation targets, for the region and Bonneville;
- Bonneville-specific recommendations on EE funding levels,
 emerging technologies, research, and building code support;
- programmatic efforts to weatherize uninsulated homes and build a
 commercial end-use intensity database to target high intensity
 buildings;
- the importance of NEEA and regional research;
- RTF-specific recommendations on measure costs, load profiles,
 and the interaction between energy efficiency and demand
 response; and
- Model Conservation Standards on common appliance standards in
 the Northwest, no “backsliding” on federal or state efficiency
 standards, and the importance of efficiency for jurisdictions
 considering electrification.

Staff is providing a comprehensive update on all 2021 Plan conservation
program elements to help inform future discussions on potential updates
to the Plan’s Mid-Term Assessment language.

More Info: For further details of the 2021 Plan conservation program elements,
please see Section 5 of the following supporting documentation:
https://www.nwcouncil.org/2021powerplan_summary-recommendations/.
Is Energy Efficiency Really Worth Doing Anymore?

(aka Updates on Conservation Program Elements from the 2021 Power Plan)

April 2024 Power Committee Meeting
Kevin Smit, Christian Douglass

About the title...

• A former staff member, Charlie Grist, gave a presentation in 2017 with this title. At that time, there was low-cost natural gas which resulted in relatively low avoided costs for EE
• The 2021 Plan had some similar (and yet very different) results – the market now includes low cost solar and wind (with forecasted declining costs) that “compete” with EE
• Considering the 2021 Plan results, I have recently been asked to give this presentation again
• More recent happenings in the market may suggest that more, not less EE is needed
• But in answer to the question: Yes, conservation is worth doing, and maybe more so now
Objectives

- Reminders of what the NW Power Act requires for EE in the power plan
- Provide a check-in on the progress of the Conservation Program from the 2021 Plan
 - How is the region doing with the entire EE Program (i.e., beyond just the minimum target)?
 - Are the conditions the same or different for EE now vs. 2021 Plan?
 - What value does EE carry in different parts of the region?
- Brief look at how we are using the End-Use Load Research data

Definition of Conservation in the Power Act

“Conservation” means any reduction in electric power consumption as a result of increases in the efficiency of energy use, production, or distribution.

1. Does the opportunity reduce electric power consumption?
 and

2. Is the reduction in electric power consumption the result of an increase in efficiency of energy use, production, or distribution?
Conservation Notes from the NW Power Act

- “Priority shall be given: first, to conservation…”
- Priority given to resources that are cost effective
 - Reliable and available when needed
 - Incremental system cost no greater than similarly reliable and available alternate resource
- System Cost
 - All direct costs of a measure or resource over its effective life (e.g., T&D, waste disposal)
 - Quantifiable environmental costs and benefits that are directly attributable
- Resource
 - Electricity generating facilities
 - Load reduction from conservation measures
 - Load reduction from direct application renewables
- Conservation program
 - “The plan shall set forth a general scheme for implementing conservation measures”
 - Must include a Model Conservation Standard
 - Recommendations for research and development
- Methodology for determining quantifiable environmental costs and benefits

Conservation Program in the 2021 Plan

The Target
- Range of 750 to 1000 aMW for the region
- Bonneville: Program Minimum of 243 aMW

Research Recommendations
- Research to support achieving the targets
- Recommendations to support other important EE activities

Model Conservation Standards
- EE adoption through codes and standards
- Energy efficient electrification and decarbonization
Total Regional Savings Achieved 149.8 aMW

- First year of tracking puts the region on track to meet the Council’s 2021 Power Plan targets of **between 750 and 1000 aMW by 2027**

BPA Achieved 38.9 aMW in 2022

- BPA Program Target is **243 aMW by 2027**

Even Distribution of 2021 Plan Goals

- 149.8 aMW
- 750 aMW Target
- 1,000 aMW Target

Ramped 2021 Plan Goals

- 149.8 aMW
- 750 aMW Target
- 1,000 aMW Target

Even Distribution of 2021 Plan Goals

- 38.9 aMW

Ramped 2021 Plan Goals

- 38.9 aMW

Recap from RCP October 2023
Conservation Recommendations

https://www.nwcouncil.org/2021powerplan_summary-recommendations/

<table>
<thead>
<tr>
<th>Item</th>
<th>Section</th>
<th>Title</th>
<th>Item</th>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Conservation</td>
<td>Regional Conservation Target</td>
<td>5.7</td>
<td>Conservation</td>
<td>Addressing Equity with EE</td>
</tr>
<tr>
<td>5.2</td>
<td>Conservation</td>
<td>Bonneville Target</td>
<td>5.8</td>
<td>Conservation</td>
<td>RTF: Flexibility and Resiliency</td>
</tr>
<tr>
<td>5.2</td>
<td>Conservation</td>
<td>Bonneville Maintain Budget</td>
<td>5.8</td>
<td>Conservation</td>
<td>RTF: Rigor to Measure Costs</td>
</tr>
<tr>
<td>5.2</td>
<td>Conservation</td>
<td>Bonneville Fund ET</td>
<td>5.8</td>
<td>Conservation</td>
<td>RTF: Load Profiles</td>
</tr>
<tr>
<td>5.2</td>
<td>Conservation</td>
<td>Bonneville Fund Research</td>
<td>5.8</td>
<td>Conservation</td>
<td>RTF: EE/DR Interface</td>
</tr>
<tr>
<td>5.3</td>
<td>Conservation</td>
<td>Bonneville Support Building Codes</td>
<td>5.8</td>
<td>Conservation</td>
<td>RTF: Equity In Evaluation Guidelines</td>
</tr>
<tr>
<td>5.3</td>
<td>Conservation</td>
<td>Actions in Support of Target</td>
<td>5.9</td>
<td>Conservation</td>
<td>MCS: Common Appliance Standards</td>
</tr>
<tr>
<td>5.4</td>
<td>Conservation</td>
<td>Attributes of EE</td>
<td>5.9</td>
<td>Conservation</td>
<td>MCS: No Backsliding</td>
</tr>
<tr>
<td>5.5</td>
<td>Conservation</td>
<td>Importance of NEEA</td>
<td>5.9</td>
<td>Conservation</td>
<td>MCS: Efficient Electrification</td>
</tr>
<tr>
<td>5.6</td>
<td>Conservation</td>
<td>Recognizing the Value of Research</td>
<td>5.10</td>
<td>Conservation</td>
<td>Surcharge Recommendation</td>
</tr>
</tbody>
</table>

Recommendations to BPA

- Maintain ratepayer-funded efficiency programs (utility direct programs and market transformation initiatives) at a funding level sufficient to achieve the 2027 goals
- Continue to fund research and development on emerging technologies in an amount commensurate with 2020 levels or greater
- Continue to fund regional market research, stock assessments, evaluation, and related analysis in an amount commensurate with 2020 levels or greater
- Support initiatives to enhance building codes and appliance standards, at both the state and federal governments
Programs, EE Attributes, and NEEA

- **Actions in Support of Target (Utilities)**
 - This is a standard list of recommendations that have been in the last several power plans.
 - Essentially this is a list of EE program best practices.

- **Important Attributes of EE (RTF)**
 - Adequacy, resilience, and flexibility
 - RTF Working on these – more later

- **Importance of NEEA (Utilities)**
 - The region will need to continue to support NEEA at levels at least commensurate with 2020 levels

Recognize the Value of Research

- **Evaluation (BPA, Utilities)**
 - Continue to conduct robust evaluations of EE programs
- **Market research (BPA, NEEA)**
 - Provides insights to characterizing efficient products available in the market
 - Providing important information needed to refine and focus efficiency programs
 - Develop baselines necessary for estimating energy savings opportunities going forward

- **Regional stock assessments (NEEA)**
 - Residential Building Stock Assessment (RBSA) – every 5-6 years. Next release: 2024
 - Commercial Building Stock Assessment (CBSA) – every 5-6 years. Next release: 2026
 - Industrial Facility Stock Assessment (IFSA) – only one conducted in 2014
 - Motor-driven systems – NEEA working on this
 - Water supply and wastewater treatment – in-house

- **Emerging technology research (NEEA, BPA, Utilities)**
 - Collaborative research and demonstration by the regions’ utilities
 - NEEA’s RETAC coordinates this effort

- **End-use load research (NEEA, Utilities)**
 - More on this one later
Equal Distribution of Benefits

1. Establish diversity, equity, and inclusion metrics for programs (NEEA, Utilities)
 - The region convene a series of workshops to investigate existing equity data
 - Share publicly available data sources
 - Perform a gap analysis to identify areas where further research and data are needed

2. Targeted weatherization (Bonneville, Utilities)
 - Continue to invest in weatherization programs, targeting those homes that are leaky (in need of duct or air sealing) and/or have zero or limited insulation
 - The Council recommends the region and Bonneville have a focused effort on finding those homes that have been missed by prior activities

3. Develop commercial end-use intensity database and target buildings with high intensity (NEEA)
 - EE measure gaps are difficult to identify in the commercial sector due to the many building types and customer segments
 - NEEA, with support from the region and Bonneville should develop a reliable commercial building energy use intensity data set
 - Capture information about energy use, building type, location, size, and other important customer segment characteristics
 - Target high EUI buildings

4. Pursue co-funding opportunities (Utilities, BPA)
 - Programs should explore co-funding opportunities, partnering with other organizations to achieve the mutual benefit

Regional Technical Forum

- Flexibility and Resiliency
 - Investigate methods for quantifying the value of flexibility and resiliency

- Increase Rigor of Measure Cost Analysis
 - Allocate more resources to incremental cost analysis

- Load Profiles
 - Continue to improve measure load and savings shape library

- EE/DR Interface
 - Take a more holistic approach to its assessment of measures that provide both EE and DR
 - Understand impacts of energy and capacity savings when considering EE and DR measures in tandem

- Equity in Evaluation Guidelines
 - Explore guidelines for incorporating equity in evaluation
 - Leverage work from regional utilities and other entities
Model Conservation Standards

- **Common Appliance Standards (States, Regulators)**
 - Recommended that NW states consider adopting common standards and work to synchronize updates

- **No Backsliding on Codes or Standards (States, Regulators)**
 - Once a code or standard has been adopted, no state or federal agency should change the standard such that a subset of buildings or appliances are subject to less stringent standards

- **Conversion to Electric Space Conditioning and Water Heating (Utilities)**
 - For jurisdictions pursuing economy-wide decarbonization goals
 - Significant EE investments
 - Take actions through codes, service standards, user fees or alternative programs, or a combination thereof, to achieve electric power savings from buildings
 - Efficient electrification

- **Surcharge Recommendation (Council, Bonneville)**
 - The Power Act authorizes the Council to recommend a surcharge and the Bonneville Administrator may thereafter impose such a surcharge on customers that have not implemented conservation measures that achieve energy savings comparable to those which would be obtained under the Model Conservation Standards in the plan. The Council does not recommend a surcharge to the Administrator under Section 4(f) (2) of the Act at this time.

Summary Status of Plan Recommendations

<table>
<thead>
<tr>
<th>Title</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Conservation Target</td>
<td>Addressing Equity with EE</td>
</tr>
<tr>
<td>Bonnevile Target</td>
<td>RTF: Flexibility and Resiliency</td>
</tr>
<tr>
<td>Bonnevile Maintain Budget</td>
<td>RTF: Rigor to Measure Costs</td>
</tr>
<tr>
<td>Bonnevile Fund ET</td>
<td>RTF: Load Profiles</td>
</tr>
<tr>
<td>Bonnevile Fund Research</td>
<td>RTF: EE/DR Interface</td>
</tr>
<tr>
<td>Bonnevile Support Building Codes</td>
<td>RTF: Equity in Evaluation Guidelines</td>
</tr>
<tr>
<td>Actions in Support of Target</td>
<td>MCS: Common Appliance Standards</td>
</tr>
<tr>
<td>Attributes of EE</td>
<td>MCS: No Backsliding</td>
</tr>
<tr>
<td>Importance of NEEA</td>
<td>MSC: Efficient Electrification</td>
</tr>
<tr>
<td>Recognizing the Value of Research</td>
<td>Surcharge Recommendation</td>
</tr>
</tbody>
</table>
What has Changed? Recent Context

- Conditions/policies have changed since the 2021 Power Plan:
 - OR HBs 2021 and 2531
 - WA State Energy Strategy, Climate Commitment Act (CCA), and Hydrofluorocarbon Transition Rule
 - Federal IRA HOMES program
- The 2027 Adequacy Assessment showed that if loads grow significantly, we might need to do more than the base strategy for EE and DR
- The mid-term assessment has identified some risk in the areas of potential load growth and reserves (e.g., data center load growth)

The Value of EE Under Decarbonization

Presented to Conservation Resources Advisory Committee in July 2023

- The plan and the MCS recognized that jurisdictions that have aggressive decarbonization goals may see a higher value for EE than we did at the regional level and at the time of the 2021 Plan
- Council staff conducted some further analysis using our partial decarbonization scenario to explore the value of EE in those jurisdictions.

Reference:
Model Conservation Standard
Supply Curve Comparison – Base and Decarbonization Scenario

- The Decarbonization Scenario shows a significant increase in EE potential over the base case
 - Increased electrification
 - Emerging tech
- When this scenario was run in the portfolio model, more EE was acquired than in other scenarios
 - In part due to additional EE available (bigger supply curve)
 - Much more need for EE
- In this case, the portfolio model acquired ~1200 aMW of EE by 2027 and 7200 aMW by 2041

How does this inform MCS?

- Cost-effectiveness in plan is based on target of 750 aMW by 2027/2400 aMW by 2041
- If we apply the same cost-effectiveness criteria to the decarbonization supply curve, we get: ~1225 aMW by 2027, 4140 aMW by 2041.
 - More units = more cost-effective efficiency
 - This does not necessarily reflect a greater need that would need to be met under a deep decarb policy
- The 2041 amount of EE need in the decarbonization case (7200 aMW) is significantly higher than the base target (2400 aMW)
What does this mean?

- To meet the 2041 acquisition, ~$90/MWh was added to cost-effectiveness criteria (across the board) to reach ~7200 aMW
 - This basically means that we’re giving a risk adder to all EE such that we are going up the supply curve an additional $90/MWh.
 - Current cut off for cost-effectiveness is ~$30/MWh levelized cost
 - For jurisdictions with decarbonization policies using the Council cost-effectiveness formulation, recommend adding $90/MWh to the benefits
- If a jurisdiction is running a full IRP and incorporating the policies, then that should drive the cost-effectiveness formulation
- Some examples:
 - Energy Trust targets are more aggressive than their Share of the Council target
 - PSE’s IRP – higher EE avoided costs
 - Seattle City Light IRP – higher EE avoided costs

The Value of the Northwest Energy Efficiency Alliance (NEEA) End Use Load Research (EULR) data

- NEEA’s EULR work highlights a few of the 2021 Plan’s conservation recommendations, including:
 - Recommendation 5.5, “Importance of NEEA”
 - Recommendation 5.6, “Recognizing the Value of Research”
 - Recommendation 5.9, “MCS: Efficient Electrification”
- Some background on NEEA’s EULR:
 - ~$12.5 million effort, metering circuit-level power usage and temperatures in ~400 NW homes and ~70 NW businesses
 - Data collection spans five years with multi-year data for most sites
 - Collecting minute-level power data for funders; 15-minute-level data available to the public
 - Residential effort: Home Energy Metering Study (HEMS)
 - Commercial effort: Commercial Energy Metering Study (CEMS)
 - Largest-scale metering study since ELCAP* in the 80’s

*End-Use Load and Consumer Assessment Program
What can we learn from the EULR data for our power planning needs?

- Energy use intensities (EUIs) by HVAC type
- Hourly load and savings shapes (time value of EE)
- Heat pump backup resistance use and behavior
- Thermostat schedules and their effect on demand
- Equipment demand under extreme weather
 - Heat dome is in the data
 - Also, multiple cold snaps
- Heat pump water heater backup resistance use
- EV charging patterns
- The list goes on...

Some Interesting Findings Thus Far:

Deep Setbacks & Opportunities for Better Heat Pump (HP) Controls

- This work is the subject of a recent Council staff and RTF paper accepted for the 2024 ACEEE Summer Study conference on EE in buildings
- The paper highlights strategies for significantly reducing backup heating demand, such as:
 - proper HP sizing
 - proper envelope insulation and duct assessment
 - better cold-climate compressor capacity
 - reducing unneeded backup heat capacity
 - proper backup heat lockout settings
 - more proactive thermostat controls
 - better consumer education
Summary

• The 2021 Power Plan Conservation Program has more than the target:
 – A regional target for cost-effective EE
 – Research and program recommendations
 – Model Conservation Standards
 – Specific focus for jurisdictions with decarbonization goals: they will need to do more than the minimum
 – The MCS focuses on electrification of end uses and basically says that those measures (while maybe not cost-effective under the plan) are likely cost-effective.

• The 2027 Adequacy Assessment showed that if loads grow significantly, we might need to do more than the base strategy

• The mid-term assessment has identified some risk in the areas of potential load growth and reserves

• Conditions/policies have changed since the 2021 Power Plan

Bottom line: The region is doing relatively well on the 2021 Conservation Program. Changes since the plan and the MCS indicate the region should focus on the upper end of the target range (1000 aMW by 2027)
Actions in Support of Target

1. Conservation acquisition programs should be designed to ensure that regionally cost-effective levels of efficiency are economically feasible for the consumer.
2. Conservation acquisition programs should be targeted at conservation opportunities that are not anticipated to be developed by consumers.
3. Conservation acquisition programs should be designed so that their benefits are distributed equitably.
4. Conservation acquisition programs should be designed to secure all measures in the most cost-efficient manner possible.
5. Conservation acquisition programs should be designed to take advantage of naturally occurring “windows of opportunity” during which conservation potential can be secured by matching the conservation acquisitions to the schedule of the host facilities or to take advantage of market trends. In industrial plants, for example, retrofit activities can match the plant’s scheduled downtime or equipment replacement; in the commercial sector, measures can be installed at the time of renovation or remodel.
6. Conservation acquisition programs should be designed to capture all regionally cost-effective conservation savings in a manner that does not create lost-opportunity resources. A lost-opportunity resource is a conservation measure that, due to physical or institutional characteristics, will lose its cost-effectiveness unless actions are taken now to develop it or hold it for future use.
7. Conservation acquisition programs should be designed to maintain or enhance environmental quality.
8. Conservation acquisition programs should be designed to enhance the region’s ability to refine and improve programs as they evolve.

Model Conservation Standards (MCS)

The Northwest Power Act directs the Council to include in the power plan an energy conservation program that includes “model conservation standards” (MCS). The MCS are a prescriptive means of acquiring energy efficiency – that is, specific standards such as building insulation levels.

Section 4(f) of the Power Act tells the Council that the model conservation standards (MCS) to be included in the plan shall be applicable to:

(i) new and existing structures
(ii) utility, customer, and governmental conservation programs
(iii) other consumer actions for achieving conservation

The standards must “reflect geographic and climatic differences within the region and other appropriate considerations.”

The Council should design the MCS to “produce all power savings that are cost-effective for the region and economically feasible for consumers, taking into account financial assistance from the Bonneville Power Administration and the region’s utilities.”

Section 4(f) of the Power Act also authorizes the Council to recommend that Bonneville impose a surcharge on its utility customers in areas that have not implemented the MCS.
Committee Chair Senator Henry Jackson: Mr. Eckman, what is the single most important thing that we could undertake in the Pacific Northwest to bring about true conservation?

Tom Eckman (Chair of the Washington Environmental Council Energy Committee): I think regionwide the institution of cost-effective building performance standards either in terms of engineering standards or heat loss standards would have the greatest potential for reducing electricity demands.

Model Conservation Standards (MCS)

Section 4(f) of the Power Act tells the Council that the model conservation standards (MCS) to be included in the plan shall be applicable to:

(i) new and existing structures
(ii) utility, customer, and governmental conservation programs
(iii) other consumer actions for achieving conservation
Model Conservation Standards (MCS)

This section of the Act also requires:

- that the standards “reflect geographic and climatic differences within the region and other appropriate considerations.”
- that the Council design the MCS to “produce all power savings that are cost-effective for the region and economically feasible for consumers, taking into account financial assistance from the Bonneville Power Administration and the region’s utilities.”

MCS - Surcharge and Surcharge Methodology

Section 4(f) of the Power Act also authorizes the Council to recommend that Bonneville impose a surcharge on its utility customers in areas that have not implemented the MCS.

The power plan is to include a methodology for calculating the surcharge before the Council may recommend a surcharge.
MCS - Surcharge Methodology

Per Section 4(f)(2), the surcharge may be imposed on Bonneville customers for those portions of their regional loads that are within states or political subdivisions that have not, or on customers who have not, implemented conservation measures that achieve savings of electricity comparable to those that would be obtained under the model conservation standards.

- The surcharge is to be designed to recover additional costs incurred because projected energy savings have not been achieved.
- The surcharge must be no less than 10 percent and no more than 50 percent of the Administrator’s applicable rates for a customer’s load or portion of load.

The intent of the surcharge possibility is to provide a strong incentive to utilities and state and local jurisdictions to adopt and enforce the standards or comparable alternatives.

MCS in the Power Plans

- In the first three Power Plans (1983, 1986, 1991), the focus of the MCS was on developing and adopting efficient building codes. These were very prescriptive, building-coded like standards that resulted in strong state building energy codes.
- The Fourth Plan (1998) included prescriptive requirements for residential and recommended ASHRAE 90.1 for commercial.
 - Less focus on MCS due to utility restructuring.
- The Fifth (2004) and Sixth (2010) Plans included further prescriptive requirements especially for residential and commercial buildings and added new construction program requirements for “all cost-effective conservation.”
- The Seventh Plan (2016) focus was globally to “acquire all cost-effective efficiency” as well as on more specific actions (e.g. detailed process to acquire distribution efficiency).
- The 2021 Plan (2022)
MCS in the Power Plan (cont’d)

First Power Plan MCS April 27, 1983

- Established space heating performance targets for new electrically heated residences for three Northwest Climate Zones
- MCS requirements were 40% better than toughest existing energy codes in region
- Recommended that MCS be adopted by January 1, 1986 or BPA impose 10% surcharge on utilities serving non-complying areas
- Council was sued. Ninth Circuit affirms MCS. Seattle Master Builders case

Example MCS Table from Plan 1

<table>
<thead>
<tr>
<th>Element</th>
<th>Climate Zone*</th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Group R</td>
<td>Group A</td>
<td>Group R</td>
</tr>
<tr>
<td></td>
<td>Dv. 3</td>
<td>Dv. 1</td>
<td>Dv. 3</td>
<td>Dv. 1</td>
</tr>
<tr>
<td>Wall U-value (U-value)</td>
<td>.10</td>
<td>.115</td>
<td>.09</td>
<td>.115</td>
</tr>
<tr>
<td>Roof/Ceiling U-value (U-value)</td>
<td>.028</td>
<td>.026</td>
<td>.028</td>
<td>.035</td>
</tr>
<tr>
<td>Floors over Unconditioned Spaces U-value (U-value)</td>
<td>.05</td>
<td>.05</td>
<td>.036</td>
<td>.035</td>
</tr>
<tr>
<td>All Others (U-value)</td>
<td>.08</td>
<td>.08</td>
<td>.08</td>
<td>.05</td>
</tr>
<tr>
<td>Slab-on-Grade Floors</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Unheated (R-value)</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

*Zone 1 = 4000 - 6000 heating degree days at 60°F
*Zone 2 = 0001 - 4000 heating degree days at 62°F
*Zone 3 = over 8000 heating degree days at 60°F
*Includes all components of gross wall area (see definition)
*Includes all components of gross roof/ceiling area (see definition)
*Includes all components of gross floor area (see definition)
*Not incorporating a heating system within floor slab
Implementing the MCS

- 1986
 - Washington State Legislature enacts state energy code that achieves about 50% of the savings called for by the MCS
 - Oregon Energy Conservation Board revises state energy code that achieves about 40% of savings called for by MCS beginning in 1987 and 55% beginning in 1989
- 1991/92 – Oregon and Washington update codes to near MCS levels
- 2009 – Idaho and Montana adopt codes roughly equivalent to MCS

MCS in the Power Plan (cont’d)

- The Fourth Plan (1998) included prescriptive requirements for residential and recommended ASHRAE 90.1 for commercial
 - Less focus on MCS due to utility restructuring
- The Fifth (2004) and Sixth (2010) Plans included further prescriptive requirements especially for residential and commercial buildings and added new construction program requirements for “all cost effective conservation”
- The Seventh Plan (2016) focus was globally to “acquire all cost-effective efficiency” as well as on more specific actions (e.g. detailed process to acquire distribution efficiency)
MCS in the Seventh Plan

The focus of the Seventh Power Plan MCS was on three areas intended to improve program design and delivery:

- Ensuring full participation in programs
 - MCS-1 – Improve participation in programs from “hard to reach” or “underserved” markets

- Achieving voltage optimization
 - MCS-1 – Evaluate and pursue savings on utility distribution circuits

- Enhancing codes and standards
 - MCS-3 through MCS-7 – efforts related to supporting building codes and Federal standards
 - Much of this is accomplished through NEEA

A Few Notes from the Power Act...

Cost-effective means that such measure or resource must be forecast...
• to be reliable and available within the time it is needed, and
• to meet or reduce the electric power demand ... of the consumers of the customers at an estimated incremental system cost no greater than that of the least-cost similarly reliable and available alternative measure or resource, or any combination thereof.

Resource means -- electric power, including the actual or planned electric power capability of generating facilities, or actual or planned load reduction resulting from direct application of a renewable energy resource by a consumer or from a conservation measure. (3(19))
A few more notes from the Power Act...

4(e) Plan priorities and requisite features; studies

4(e)(1). The plan shall, as provided in this paragraph, give priority to resources which the Council determines to be cost-effective. Priority shall be given: first, to conservation; second, to renewable resources; third, to generating resources utilizing waste heat or generating resources of high fuel conversion efficiency; and fourth, to all other resources. [Northwest Power Act, §4(e)(1), 94 Stat. 2705.]

4(e)(2). The plan shall set forth a general scheme for implementing conservation measures and developing resources pursuant to section 839d of this title to reduce or meet the Administrator’s obligations with due consideration by the Council for (A) environmental quality, (B) compatibility with the existing regional power system, (C) protection, mitigation, and enhancement of fish and wildlife and related spawning grounds and habitat, including sufficient quantities and qualities of flows for successful migration, survival, and propagation of anadromous fish, and (D) other criteria which may be set forth in the plan. [Northwest Power Act, §4(e)(2), 94 Stat. 2706.]

4(e)(3). To accomplish the priorities established by this subsection, the plan shall include the following elements which shall be set forth in such detail as the Council determines to be appropriate:

4(e)(3)(A). an energy conservation program to be implemented under this chapter, including, but not limited to, model conservation standards; [Northwest Power Act, §4(e)(3)(A), 94 Stat. 2706.]

4(e)(3)(C). a methodology for determining quantifiable environmental costs and benefits under section 839a(4) of this title; [Northwest Power Act, §4(e)(3)(C), 94 Stat. 2706.]