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CHAPTER 1. INTRODUCTION

Rich Zabel (NWFSC), Tom Cooney (NWFSC), Chris Jordan (NWFSC)

This document is the second document on Life-Cycle modeling that is being reviewed by the
Independent Scientific Advisory Board (ISAB). The first review took place in 2013 (Zabel et
2013, ISAB 2013), and this document is a follow up to that one. We have made many

improvements since 2013. Here are some highlights:

We have developed several methods to estimate habitat capacity (Bond et al. Chapter 2a, 2b,
Liermann et al. Chapter. 2c, Jordan et al Chapter 9d). The ISAB recommended working with our
Watershed program, and this is partially in response. Overall, we have gotten closer to
establishing relationships between fish performance and habitat restoration. We provide several
examples of this (e.g., Bond et al. Chapter 2a, 2b; Benjamin et al., Chapter 6¢; Cooney et al.,
Chapter 9a; Jordan et al., Chapter 9d).

We have improved out modeling of ocean/estuary survival (Burke et al., Chapter 3). We have
adopted an approach that utilizes PIT-tag data instead of using dam counts. This has improved
accuracy because PIT tags are detected at Bonneville Dam, for both juveniles and adults, so we
don’t need to “back out” survival through the hydrosystem. Further, because the modeling is

based on individuals, we can incorporate the effect of arrival timing in our estimates.

In hydro modeling, both CSS and COMPASS have improved. Lessard (Chapter 4a) has
developed an integrated life-cycle model for the Grande Ronde basin that incorporates a
covariate related to powerhouse exposure. With COMPASS, Faulkner et al. (Chapter 4b) have
calibrated the model to the most recent data and have developed population-specific estimates

for survival through the hydrosystem.

In the last review, the ISAB recommended that we consider exposure to toxics as an impact on
salmon populations. Chapter 5 (Scholz et al., Chapter 5) represents a comprehensive treatment
of this topic. The chapter deals with the spatial location of various sources of toxics to the
response of populations to toxic loads. It also presents a population model of the impacts of

toxic exposure on population performance.

In regard to ecological interactions, we have expanded our modeling substantially. The avian

predation section (Paulsen, Chapter 6b) has been updated with recent analyses. California Sea



Lions have expanded their presence in the Columbia River estuary to become a major threat.
Accordingly, we have developed a module that covers population-specific mortality due to
predation by sea lions (Sorel et al., Chapter 6a). And finally, the Methow food web model
(Benjamin, Chapter 6¢) has improved greatly.

Types of Models

We developed models of varying degrees of complexity to help us address issues of data
availability to inform various actions. We are working on three classes of life cycle models —
Simple, Intermediate and Complex — that vary in their data needs, spatial and temporal resolution
and complexity, but most importantly, are designed for specific management applications. The
modeling approaches are distinct, but complementary, and it is our plan to continue their

development, eventually hybridizing the methods to optimize model design and performance.

Simple Model

For our uses, we define the “simple” model as a spawner-to-spawner model with just enough
information (e.g., harvest rates, age-composition data, hatchery releases) to represent key drivers
that affect population dynamics (Buhle et al., chapter 7). We developed Integrated Population
Models (IPMs), which are Bayesian and state-space, to represent this type of model. These
models are useful for capturing the overall population dynamics and for assigning risk to

populations under current conditions.

Intermediate Model

These models still use Integrated Population Modeling. However they expand upon the simple
models to add additional factors and/or life stages. The Snake River fall chinook model (Perry et
al., Chapter 8) and the Grande Ronde Integrated Population Models (Lessard, Chapter 4a) are
examples of this. In addition, we envision several other models that focus on particular drivers
such as hydro, harvest, parr production, or pinniped predation. With these models, we can

examine the effects of one to a few impacts on populations.



Complex model

These models represent a number of different life stages and drivers. They are too complex to be
represented by an integrated population model; however, they are still very reliant on data. Their
main purposes are to look at a “portfolio” of actions and to serve as ‘test beds’ for evaluating less
data intensive methods for simulating action effects with intermediate models that can be applied

to populations with less data. Chapter 9 provides several examples of this type of model.

We are developing methods (e.g., Jorgensen et al., Chapter 9) to calibrate these models such that

their “baseline” scenarios have the same statistical properties as current conditions.

Synergistic Interactions

One of the benefits of having models of different levels of complexity is that we can compare
results across models and foster the development of hybrid approaches. For example, the
Integrated Population Model approach of simultaneously estimating population processes and
population behavior is a much more statistically robust method than the purely simulation based
stage-based models. Unfortunately, the biological complexity of salmonid life cycles that
account for spatially and temporally explicit management actions are beyond the capacity of
IPMs. However, using IPMs to estimate population process values where possible and
incorporating these as parameters in more complex simulation models makes the best advantage
of the available data. Also, we can “borrow” relationships from one population and apply it to

another population.

Spatial Modeling
Interrelationships within and among populations

It is quite clear that salmon populations are not independent units; however, it is not always clear
when and where demographic isolation occurs. It is also clear that basic fish-habitat
relationships exist by species; but again, it is not always clear the degree to which these
relationships can be applied broadly within and across populations and ESUs. These constraints
may imply that to apply life cycle based management tools, every salmonid population requires a
complete and locally specific parameterization effort. We take, however, a somewhat moderated

view, by assuming that there are broad commonalities to salmonid biology, watershed processes,



and their interactions, across populations within the interior Columbia River Basin. As such,
“borrowing” data within and among populations is a reasonable approach to allow the
development of complex life cycle models in what may appear to be data “poor” population

areas.
Also, we plan to use spatial or meta-population models to help prioritize among populations.
Collaborative Effort

As was the case when the ISAB first reviewed this project, all of the work resulting from this
project represents an extensive collaborative effort among scientists from federal, state, and tribal
agencies and universities. We also acknowledge and are encouraged that each model is quite
different, with each model development process following a different trajectory. We believe that
this approach encourages creativity and results in more robust products with increased collective

understanding and buy-in.

The collaborative effort has been distributed across participating entities, but also across the
geographic domains that the participants represent. For example, the following life cycle model

sectors have advanced particular features of the overall project
Grande Ronde — timing of actions; supplementation
Wenatchee — Model calibration and sensitivity analysis
Salmon River Basin — climate change
Middle Fork John Day — reach-scale restoration actions to watershed impact
ISEMP/CHaMP — habitat assessment toolkit
Yakama River steelhead — flow management, life-history diversity.
Communication with Managers
Because scientists are notoriously bad at communicating with non-scientist, we have asked some
managers to provide us with the type of information they need in the decision-making process.
This has led to the final chapter in our report — Communication with Managers. We have begun

to compile some useful information (e.g., maps and fact sheets) that can help managers better

understand what types of products we are producing.



What are we missing?
Climate change

Due to resource limitations, we were not able to comprehensively deal with climate change,
beyond what is covered in the Salmon River basin model (Crozier et al., Chapter 9). Climate and
climate change can affect multiple life stages of the salmon life history: pre-spawn mortality,
parr survival, downstream migration through the hydrosystem, ocean/estuary survival, and

upstream survival.

NOAA Fisheries is currently conducting a vulnerability analysis for West Coast fish species,
including salmon. They identified five life stages — egg, juvenile freshwater, estuary, ocean, and
adult freshwater — and a life-cycle component and assessed the vulnerability of each salmon
Evolutionarily Significant Unit (ESU) to climate change in each life stage. We plan to take the
information on vulnerability of each life stage and compare that to opportunities for action to

develop a comprehensive plan to deal with climate change.

Non-indigenous species.

In our previous review, the ISAB identified non-indigenous species as a threat that we should
consider. Unfortunately, this is the one area we did not get to. There has been little research to

connect NIS to salmon survival, and this is one of the problems.

Portfolio of life-stage specific actions

One of the advantages of Life-Cycle modeling is the ability to assess impacts at multiple life
stages by translating changes in life-stage demographic rates to changes in viability metrics. In
this way, we can put together a portfolio of actions to compare across different portfolios. We
are proposing an adaptive management strategy where we use life-cycle models to design and
assess alternative suites of actions. Prospective life-cycle models are used to develop alternative
portfolios of actions. Alternative portfolios can be compared with a variety of performance
metrics, such as in a cost-benefit or extinction risk framework. The life cycle models also play a

critical role in an adaptive management context as they make testable, quantitative predictions.



These predictions are treated as hypotheses, and an appropriately designed monitoring program
can assess the predicted outcome and can be used to evaluate and improve the analytical

framework when the outcomes differ from expected.

Adaptive Management " Cost-

Benefit
Analysis

Model

DATA drospective Portfc_)lio
Model Of Actions

Analysis

Data

Figure 1. Adaptive Management scheme. Prospective life-cycle models are used to develop alternative portfolios of actions.
Alternative portfolios can be compared in a cost-benefit analysis. Once a portfolio is chosen, we will use monitoring data to
assess whether actions were effective.

Promote consistent use if available info & assumptions

Developing a suite of analytical tools to support decision-making around salmonid recovery
actions in the Columbia River basin is critical given the scale of the region (3 species, 6 ESUs,
more than 100 populations) and diversity of potential management actions (Hydro, Hatchery,

Habitat....). Life cycle models are the obvious choice in this situation because they enforce



consistent use of population and habitat data and constrain how management actions impacts are
evaluated. As such, life cycle models represent a template that explicitly accounts for the

diversity of population settings and management actions.

Applications (inform status assessments, strategic planning etc)

All assessments of salmon population management in an ESA (and MSFMA) context can be
supported by life cycle modeling. Simple life cycle models are currently used in stock
forecasting for most ocean salmon harvest. More complex life cycle models that are spatially
explicit or have finer temporal resolution are used to support water management in the
Sacrament River delta system. All ESA listing and status decisions are supported with full life
cycle evaluations of extinction risk or population persistence. Consultations on reach-scale
single habitat alterations may appear to be too small and too isolated to be applicable to a life
cycle modeling based evaluation; however, the methods could be applied in a regional context if

consultations were bundled spatially to a larger-scale.

Systematic framework for setting rme priorities

In the context of Adaptive Management, life cycle models both form the analytical framework
for making quantitative, testable predictions of management action outcomes, but also form the
basis for the data or monitoring needs. The data needs of a life cycle model based decision
support system are both to parameterize the population processes represented in the model (e.g.,
stage specific abundance, survival and capacity), and to test the population response to
management actions (e.g., fish-habitat relationships, mainstem project survival, hatchery-wild
interactions). In either case, the life cycle model is the use-case for the monitoring data and as
such should be used to set the spatial and temporal resolution of sampling, choice of monitoring
metrics, and ultimately the data quality in terms of sampling and measurement uncertainty.
Having an analytical tool as the consumer of monitoring data allows direct assessments of the
consequence of variation in data quality since the impact of data quality can be immediately

translated into the quality of decision-making in terms of risk of making an incorrect decision.

Output of life cycle models

With this round of modeling, we plan to express model outputs in terms of VSP scores.



Productivity and Abundance

Here we present the idea of “risk plots”, which characterize the risk and uncertainty of
populations. The plots can represent current risk (measured as probability of falling below
QET), as well as risk under a variety of alternatives. Because the plots essentially summarize
model outputs (abundance and recruits per spawner), they can be applied to an class of model,
from simple to complex. They allow for comparison across alternatives, models and

populations.

Before we describe our approach to estimating VSP based on productivity and abundance, we

provide some definitions:

Run: A single iteration of the model with a given set of parameters for a set number of
years (usually fifty or a hundred years). For each run we keep track of the population
trajectory so we can calculate a suite of model metrics. To capture uncertainty in model

outputs, we conduct a large number of runs per scenario.

Scenario: A specific set of parameters that represent a particular management scenario.
The “Baseline” alternative represent current conditions. All other alternatives represent a

proposed future management scenario.
To represent productivity and abundance, we produce the following outputs:

Productivity: In keeping with previous analyses (e.g., Interior Columbia Technical Recovery
Team and Zabel, 2007), we calculate productivity as recruits (R, measured as returning spawners
referenced to a brood year) per spawner (S) measured at relatively low abundance. This
represents the ability of a population to rebound at low abundance. At higher abundances,
populations tend to hover about an equilibrium level, so recruits per spawner approaches unity,
and does not distinguish among alternatives. We measured productivity for each run as R/S at
50 spawners. We determined this by fitting a Gompertz model to each model run. The

Gompertz equation is:

R
10g<§) =a+b-log(S)

where a and b are parameters. We chose this equation (over a Beverton Holt equation) because

it is linear (and does not have convergence issues), and it strongly resembles a Beverton-Holt



equation, particularly at low abundance. Figure 2 demonstrates this for nine runs of for the

Wenatchee Spring Chinook population.
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Figure 2. Gompertz model (solid line) fit to nine different runs of the baseline model for Wenatchee River Chinook. Each point
represents the relationship between log(R/S) versus log(Spawner Abundance). The red point represents log (R/S) for 50
spawners for each model run.

Abundance: With this measure, we are capturing population abundance at equilibrium.
Accordingly, we measured abundance for years 26-50. In keeping with precedent (e.g., Interior
Columbia Technical Recovery Team and Zabel, 2007), we calculated the geometric mean of

abundance across each run. Geometric mean was used because population abundances tend to



have a logarithmic distribution, characterized by peaks in abundance, and the geometric mean

down-weights the peaks.
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Figure 3. Mean Abundance versus R/S at low Abundance for Wenatchee Spring Chinook. Each point represents results for a

single model run, and a range of scenarios are represented in the plot. Red points represent runs where the population fell below
the quasi-extinction threshold.

We ran the model across several scenarios (Figure 3) and plotted Mean Abundance versus

Productivity.

Consistent with the TRT, we calculated the abundance and productivity VSP score as measure of
risk, as defined as probability of following below extinction thresholds. Below we describe the

methods to do this.

Probability extinction: We adopted the definition of quasi-extinction that was established by the
TRT. P(QET) is the probability of falling below the quasi-extinction threshold (QET) within 7
years, where 7= 50. A population is considered to have fallen below the threshold if it drops
below the QET threshold, on average per year, over a four-year period. We computed P(QET)
for each alternative by compiling the proportion of 500 runs that fell below the QET threshold.

We chose 500 runs because our estimates of P(QET) stabilized after that number of runs. The

10



quasi-extinction threshold is determined for a population based on its historical size and
complexity of subpopulations. The TRT set a QET of 50 spawners per year for Snake River

spring/summer Chinook.

To generate a response surface, we used logistic regression to relate P(QET) to the Productivity
and Abundance metrics, described above. For each of the 500 runs within an alternative, we
determined whether the individual run fell below QET. If it did, we designated it as 0 (red points
in Figure 3); otherwise it was designated as 1. We did this across all alternatives to create a data
file with each line indicting whether the run fell below QET or not, and also the mean
Productivity and Abundance for the run. We then performed a logistic regression to develop a
response surface for probability of extinction versus Productivity and Abundance using the

following equation:

logit(Prob(QET)) =P+ N

where P is Productivity and N is abundance. Figure 4 demonstrates a response surface based on

Wenatchee River spring Chinook.
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Figure 4. Isoclines of extinction probability on a plot of mean abundance versus mean productivity

for the Wenatchee River spring Chinook population.

McElhany et al. (2003) provide guidelines on how to convert P(QET) into VSP scores (Table 1),

with 0 indicating a population is either extinct or at a very high risk of extinction, and 4

indicating a population is at very low risk of extinction.

report).

Table 1 Population persistence probabilities associated with persistence categories (copied from 2003 viability

Population

Persistence Category

Probability of
Population Persistence
in 100 Years

Description

0
1
2

0—40%
40-75%

75-95%

95-99%

09%

Either extinct or very high risk of extinction.
Relatively high risk of extinction in 100 years.
Moderate risk of extinction in 100 years.

Low (“negligible™) risk of extinction in 100
years (viable salmonid population)

Very low risk of extinction in 100 years.

12




Based on the Table 1, we developed a piecewise linear translation between VSP score and
probability of extinction (Figure 5). Thus, to estimate VSP scores for productivity and
abundance VSPpga, we first calculated P(QET) based on 500 runs of a specified alternative. We

then used the piecewise linear equation to convert P(QET) to VSPpga.

Next, we translate the response surface for P(QET) to VSPpga scores using the equation

depicted in Figure 5.

VSP score

I I \ I I \
0.0 0.2 0.4 0.6 0.8 1.0

Extinction Risk

Figure 5. Relationship between VSP score (for productivity and abundance) versus extinction risk. From McElhany (2003).
For a single alternative, we can then plot mean productivity and abundance for individual runs on

the response surface, along with the grand mean for all runs.

Based on Figure 4, we can then determine a VSPpga score for each run, and then determine the
distribution of these scores (Figure 5). From this distribution of scores, we can derive

uncertainty measures (variance, confidence intervals) for each alternative.

We note that the Interior Columbia Basin TRT (ICBTRT, 2007) used a slightly different

approach to scoring the VSP metrics of Abundance and Productivity. They adopted a similar
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risk-based approach as we did here. However, they instituted a lower bound to abundance that
varied by population size and complexity. If the mean population abundance fell below the
threshold, they considered the population to be not viable. See Cooney et al. (Chapter 9a) for an

illustration and further discussion of this approach.
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Figure 6. Response surface (left plot) with individual runs (points) of the model for the baseline scenario for Wenatchee Spring
Chinook. The red point is the median run. Translation (right plot) of points on the response surface to a histogram of VSP scores
for Productivity and Abundance.

Other VSP metrics.

We also calculate VSP scores for Diversity (VSPp) and spatial structure (VSPs). To combine
scores, McElhany et al. (2003) suggested the following weighting:

4-VSP,, , +VSP, +VSP,
6

VSP, =

We are still exploring ways to incorporate diversity and spatial structure into overall scoring. At

this point, we are looking at scoring life-history diversity on an MPG level.
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Overview of report and chapters

We have tried to be comprehensive in our treatment of factors throughout the salmon life history.
In particular, we responded to the ISAB review of our previous document by including a chapter

on toxics and a chapter on habitat capacity involving our watershed program.

CH 2: Habitat
Capacity

Spawners

CH 5: Toxics Smolt

Entering
Hydrosystem

CH 4: Hydrosystem

Smolt
Entering
Estuar

CH 3: Ocean/Estuary
Survival

CH 6: Pinniped

Predation Return to

River

CH 6: Avian
Predation

Figure 7. Chapters from this report and how they fit into the salmon life cycle.
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Abstract

Life-cycle models are increasingly employed in an effort to better predict the outcome of various
management scenarios on Pacific Northwest salmonids. By modeling multiple stages and
transitions, life-cycle models can determine where bottlenecks in survival limit recovery, or
make projections about population abundance under various scenarios of future conditions.
However, modeling efforts can be hampered by uncertainties in key parameters, including stage-
specific capacity. Depending on the estimation technique, capacity can refer to either the long-
term average maximum or absolute maximum number or biomass of individuals that can occupy
a habitat. Recently, focus has returned to estimating the capacity of freshwater habitats for
rearing juvenile salmonids because of the restoration potential in freshwater habitats compared to
marine waters. Additionally, changes in capacity under scenarios of management or restoration
can be used outside of life cycle modeling exercises to evaluate the efficacy of alternative
practices. In the Columbia River Basin there are seven different methods currently being used to
estimate rearing capacity at several spatial grains and extents. These approaches range from
empirical fitting of stock-recruit data, to geomorphic estimates of habitat availability, to food
web models. Our aim is to review and compare all seven methods to benefit those using capacity
estimates in modeling exercises or evaluating the benefits of restoration or management

scenarios, as well as those collecting the data used to estimate capacity.



Introduction

A primary goal of conservation biologists is determining the potential population
response of various restoration or management actions. Implied in these conservation efforts is
that habitat restoration will promote a positive demographic response in imperiled populations.
However, evaluating the efficacy of alternative restoration or management strategies requires an
estimate of how populations will likely respond to various types or intensities of actions, if at all.
To do this, researchers often attempt to estimate how many organisms a system might support
under historical, contemporary, or proposed conditions. However, there are myriad techniques to
make these estimates, and their data needs, assumptions, and applicability vary widely among
systems, taxa, and life stage. Researchers and managers must therefore decide which technique

will most adequately assess the capacity of a system.

Implicit in the ecology of organisms and ecosystems is a limit in the number of
individuals that can occupy a given habitat, which emerges from the strength of density
dependence in the environment. Although in an ecological sense carrying capacity is the
maximum number of organisms that a habitat can support (Odum 1953), a more useful
generalization for managers is the long term average asymptotic production of a given life stage
that a population may be expected to maintain when fully seeded (i.e. not limited by propagules).
Without commensurate increases in resource availability, elevation of a parent population
beyond capacity will not result in additional surviving offspring, and at high enough parent
abundances populations may suffer declines. The term “carrying capacity” to refer to maximum
supported animal abundance gained widespread use in the 20™ century as resource managers
acquired time-series of population dynamics and grappled with managing populations in a

changing environment (Sayre 2008). Thus, capacity is a key demographic characteristic that
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researchers and managers have used to understand how and why populations are limited in

abundance across spatial scales.

In fisheries, the gold standard for estimating capacity has been fitting various stock-
recruit (S-R) models to estimates of parent abundance (e.g. spawners, redds), and offspring
abundance at the life stage of interest (recruit) (Ricker 1954, Beverton and Holt 1957,
Barrowman and Myers 2000). These approaches assume that the number of recruits will increase
logarithmically until the strength of density dependence creates an asymptotic limit on additional
recruitment as capacity. However, estimating capacity in natural systems is a particular challenge
because estimates of the number or biomass of fish at any life stage is often difficult to assess.
As John Sheperd famously said: “Managing fisheries is hard: it’s like managing a forest, in
which the trees are invisible and keep moving around.” Therefore, in fisheries we often employ
limited and imprecise data when estimating capacity as the unfished equilibrium population size;

used as a reference point when setting catch quotas.

While estimating biomass or abundance for marine fishes is challenging, the necessary
movement between marine and freshwater environments of anadromous fishes provides
additional opportunities for enumeration. During their migration anadromous fishes move
through structures (e.g. weirs, dams, counting towers, sonar), or become conspicuous and
ephemeral inhabitants of rivers and streams (spawner or redd counts). Therefore the biphasic life
history of anadromous fishes facilitates a more accurate estimate of abundance, but ensures
challenges in management and conservation as bottlenecks in population capacity may vary
between freshwater, marine and migratory portions of the life history. Indeed, widespread
declines in many anadromous fishes of cultural, ecological, and economic importance

(Lichatowich et al. 1999, Gustafson et al. 2007) have led to conservation concerns and extensive
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mitigation and restoration actions. However, the expense of such actions necessitates an analysis
of the potential resulting increase in capacity. Consequently, most of our knowledge and
research into freshwater capacities comes from studies of salmonids because of the pressing need
to inform management actions that will recover these culturally and commercially important

populations (Kareiva et al. 2000, Upper Columbia Salmon Recovery Board 2007).

Estimates of salmonid capacity at fine spatial scales within freshwater habitats can be
realized and separated from density dependence in the marine environment; made possible by
several aspects of salmon life histories. First, with few exceptions, all fish migrating from marine
to freshwater habitats are mature individuals, allowing for enumeration of the parent population.
Second, most mature salmon home to their natal stream, which creates a metapopulation
structure across the landscape that allows the population dynamics of adjacent streams to operate
independently (Rogers and Schindler 2008). Third, burial of embryos ensures that juveniles
emerge and rear, at least initially, in the same location where their parents spawned. Freshwater
capacity can therefore be estimated with S-R models from time-series of spawner and juvenile

abundances.

Although S-R models can allow managers to estimate contemporary capacity and harvest
targets, the conservation utility of fitting approaches is limited, as there is no mechanistic basis
for capacity implied in the model. Additionally, many monitored populations are monitored
because of concern for population abundance, leading to a narrow range of spawner abundances
with which to fit S-R models. Further, the long time-series required to fit S-R models ensures
that estimates will span a range of environmental conditions, adding unwanted noise to the
resulting relationship. In some cases where data are extensive researchers have retrospectively

included environmental co-variates in S-R models to estimate the factors that may be limiting
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population abundance across an environmental gradient (Liermann et al. 2010) or estimate
whether multiple S-R relationships exist among alternative environmental regimes (Neuswanger
et al. 2015). However, S-R methods are costly in both data needs and the time required to obtain
those data; a long time series is often required to estimate S-R parameters with even a single

covariate because of the long generation time of anadromous fishes.

Recently, alternative methods for estimating freshwater capacity have been developed
(e.g. Bellmore et al. 2013, Rosenfeld et al. 2014, Beechie et al. 2015). However, there are key
trade-offs among methods regarding the spatiotemporal inference of capacity we can gain from
each. Particular methods may be more or less appropriate depending on the management or
conservation needs and resources available (e.g. data, time, funds, etc.) to execute each method.
In addition, capacity estimates should include uncertainty in their prediction so that it can be
accounted for and propagated in subsequent applications (e.g. life cycle models), and
communicated to managers implementing policy. Although several reviews have discussed
various methods for estimating capacity in freshwater fishes (Rosenfeld 2003, Minns et al. 2011,
Wurtsbaugh et al. 2014), there has been no formal study contrasting the pros and cons of various
approaches in their application to conservation efforts. Ideally, an approach would allow
managers to estimate capacity under alternative scenarios of biotic and abiotic conditions in the
environment at appropriate spatial and temporal scales. Therefore, in this study we aim to help
guide the execution of the most appropriate method for estimating capacity given different

management and conservation needs.

Defining capacity



The term “capacity” indicates a limit in the number of organisms supported by
abundance, yet among researchers there is complementary terminology related to capacity or

synonymous for it. Therefore, we provide a summary of commonly used terms and definitions:

Production/yield: Biomass produced per habitat unit per unit time (Ricker 1975, Wurtsbaugh et

al. 2014).

Productivity/Productive capacity: “the sum of all production accrued by all stock during the time
they spend any part of their life history in that area” (Minns 1997, Minns et al. 2011). Minns et
al. (2011) separate productive capacity into two states: a historical state without anthropogenic

influence (Pmax), and contemporary capacity (Pnow).

Density index: Primarily used in fish hatchery operations as the maximum number of fish that

can occupy a unit of space (Piper 1982).

Carrying capacity: Often represented by the parameter K, and defined here by del Monte-Luna
et al. (2004) carrying capacity is “the limit of growth or development of each and all hierarchical
levels of biological integration, beginning with the population, and shaped by processes and

interdependent relationships between finite resources and the consumers of those resources.”

Capacity: The long term average asymptotic production of a given life stage that a population
may be expected to maintain when fully seeded (i.e. not limited by the number of spawners,
although spawning habitat may be limiting). In other words, the unfished equilibrium population

size that may be sustained indefinitely under a given set of conditions (Liermann et al. 2010).

Capacity as the unfished equilibrium populations size, that is, the long-term average maximum

provides the most reasonable management target, often estimated from the fitting of S-R models



and incorporated into life-cycle models. However, in other modeling exercises, capacity as a
density index or carrying capacity where full seeding of the habitat is assumed, may be more
useful as a tool to compare the relative gains or losses achieved by restoration or management
actions. As discussed below, additional methods (e.g. taking the 90" percentile from model
estimates) may further restrict the capacity to produce more realistic capacity targets for

inclusion in life-cycle models.
Estimating Capacity

There are two broad classes of approaches currently employed to estimate capacity in
freshwater systems. The first, which includes S-R models, is statistical fitting. In this approach
measures of biotic and abiotic conditions are related to a dependent variable of abundance,
biomass or density (Fausch et al. 1988). More recently, machine learning approaches (e.g.
random forest) have been used to deal with the complex, often nonlinear, relationships between
species and their habitat. The second broad class of approaches involves construction of
mechanistic models that employ a set of functional responses to estimate fish occupancy of an
area of interest. These approaches include bioenergetic models that estimate maximum
occupancy of fish with species specific bioenergetic parameters and stream conditions (e.g.
temperature, food, flow). Other approaches include estimates of fish biomass under varying
primary productivity. Each of these approaches has advantages, drawbacks, and different data

needs.

One of the most critical challenges of estimating capacity is matching the spatial grain
and extent of interest with an appropriate method for estimating capacity at that extent, or

extrapolating local estimates to larger spatial scales relevant to management. Data used to



populate models are collected at discrete locations and times, yet estimates of capacity must be
extrapolated to some larger spatial scale of interest. Here, we focus on comparing alternative
methods for estimating the capacity of freshwater environments for fishes. Although these
methods apply to a variety of organisms, for comparative purposes, we will review techniques
applied to salmonids. The aim is to compare the data needs and application of different
approaches to provide a framework for researchers and managers seeking to estimate capacity in

their system. What are the options, data needs, limitations, and utility of various approaches?

Process and Empirical Models

As previously mentioned, S-R models are fit to estimates of the parent and offspring
abundances. However, these models do not inherently imply which factors may be limiting
populations. Therefore, researchers have long sought relationships between fish abundance and
various habitat variables encompassing the biotic and abiotic environment; often explored in a
multiple regression framework (Fausch et al. 1988). Although these models may be useful for
explaining abundance at small spatial scales, the linear relationships employed often suffer from
shortcomings that cannot be overcome with standard linear regression techniques. For example,
although abundance may be correlated with any number of discrete or continuous habitat
metrics, the monitored populations may never be observed at or near capacity. In addition, at
larger spatial scales the non-linear or threshold effects, as well as higher order interactions may
cause difficulties in expanding the relationships to the spatial or temporal grain and extent that is
relevant to management. Logistical challenges prevent ecologists from performing large scale
testing of models generated at small spatial scales, leading to a lack of validation for many of the
models that attempt to explain variation in abundance. Finally, because of the previously

mentioned difficulties in measuring the abundance of fish and the complexity of stream habitats,
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the data are often extremely noisy, even at small spatial. To overcome these limitations
alternative approaches focus on estimation of habitat type and amount (process models), or
where fish abundance data are extensive, fitting fish densities to landscape scale variables that

can be extrapolated to larger stream networks.
Process based models (Habitat expansion)

Unlike previously mentioned S-R approaches for fitting fish abundance to local
measurement of habitat characters, habitat expansion operates at the watershed or larger spatial
scale. Capacity can be directly extrapolated at any spatial scale by multiplying the amount of
available habitat by the maximum density at which animals occur. In the simplest form,

estimating habitat capacity (C) for a life stage or for smolt production employs an equation
C =X oad; (Eq. 1)

where a; is the area or volume (e.g., in terms of m? or m®) and di is the maximum density (e.g.,
individuals per area or volume) of the ith habitat type (Beechie et al. 2003). This expansion of
the maximum density across the set of habitat areas results in an estimate with units in terms of
the number of individuals, although additional modifications (e.g., a known distribution of
individual biomass at high densities) could modify this function into units of mass or other
summary value. This calculation assumes that maximum densities are constant across different

units of the same habitat type.

For example, spawning habitat capacity can be based on area of suitable spawning gravel
for a species, multiplied by the density of adults (or divided by the area occupied for each redd)
(Hanrahan et al. 2004). While this formula is simple, in many applications its use is made more

complicated by (1) adding parameter uncertainty to the estimate (Beechie et al. 2006), (2)
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increasing the number of habitat types and life stages available (Scheuerell et al. 2006), or (3)
incorporating the wide range of fish densities observed for each habitat type and life stage
(Beakes et al. in prep). The basic equation remains the same, but as the calculation is parsed out
among more life stages and habitat types the mechanics of the analysis become increasingly

complex.

As suggested by Eq. 1, habitat expansions require three essential steps: 1) classify a given
habitat into appropriate types, 2) estimate area of each habitat type, and 3) estimate maximum
density of each type. While each of these steps is conceptually simple, they each involve some

level of interpretation and uncertainty.

Habitat classification. One of the most important considerations in developing habitat-based

capacity estimates is the habitat typing system used. Two key attributes of a habitat typing
system that is useful for capacity estimation are that (1) the habitat types are predictive of fish
production and (2) they are sensitive to land use or restoration (Beechie et al. 2003, Beechie et al.
2013). This facilitates analyses of habitat change (either past degradation or future restoration)
and estimation of the change in fish populations as a function of that change. There are many
habitat classification systems in use, and most are broadly similar in their hierarchical structure
and utility for predicting changes in fish abundance as a function of habitat change (Beechie et
al. 2013). Notably, there are more habitat typing systems for small streams than for large rivers,
perhaps in part due to the fact that more research and monitoring efforts focus on small, wadable
streams. Differences among habitat typing systems are most often in the level of detail in
classifying units. In general, coarser resolution habitat units are more reliably identified and
measured (i.e., there is less observer error), while finer resolution habitat units may elucidate

more subtle responses of habitat to land use or restoration.
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Amount of habitat. Quantifying the available area of each habitat type in a river basin is

straightforward, but often time consuming. Field surveys are the most reliable means of
measuring habitat areas, although some habitat types (e.g., large river habitat units) can be
measured from aerial photography (Reeves et al. 1989). In either case, individual habitat units
are typed and measured, and then total areas of each habitat type are summed for the river basin
(or population). Where the analysis focuses on estimating historical or natural habitat areas, the
area each habitat type must be estimated using historical data (e.g., side channels on historical
maps), contemporary reference site data (e.g., pools and riffles in near-natural streams), or
models (e.g., estimating total beaver pond area based on literature values for dam frequency and
mean pond area) (Beechie et al. 1994). By contrast, if the analysis is focused on estimating
restoration outcomes, future habitat areas can be estimated based on the natural potential habitat
conditions in each reach, as well as on estimates of the new habitats created by individual

restoration actions (Beechie et al. 2015).

Habitat-specific maximum densities. The most theoretically challenging aspect of the habitat

capacity calculation is the estimation of maximum densities by habitat type. Maximum densities
might be expected to depend upon habitat complexity and primary and secondary productivity,
so estimates are likely region- or system-specific. Furthermore, estimation of maximum densities
is highly dependent on measurements of fish habitat use, and different methods have their own
associated variability and biases in estimation. Estimates can be complicated by the mobility of
fish and dynamic use of different habitat units over time. Perhaps most importantly, estimates of
fish densities are potentially subject to shifting baselines (Pauly 1995, Pinnegar and Engelhard
2008), whereby current estimates of density for a particular species reflect poor utilization due to

recent trends toward low population size. In such cases, any estimate of maximum density would
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be biased toward low estimates of capacity. These biases could lead to an expectation that

populations would reach capacity at lower levels of abundance than they naturally do.

With recognition of these potential biases, estimation of maximum density has proceeded
in two ways. First, maximum density could be estimated using experimental observations of
territory size, movement, or growth. For example, Grant and Kramer (1990) compiled data from
experimental studies of individual territory size and body size for a variety of salmonids, and
found a strong power function (Figure 1). This relationship was inverted to estimate a maximum
population density as a function of body size, which was then compared to studies with
experimental or natural observations by incorporating the frequency of various size classes
observed in each study. The results supported the allometric territory size hypothesis, although
numerous observations in natural populations were observed to be below the maximum density
relationship, suggesting that in these cases other limiting factors were operating. Hence, in
applying this broadly applicable relationship to particularly systems, care should be taken to
determine whether species-specific or system-specific variation might result in strong departures

from this upper threshold.

13



10y

oy,
(2]
&
L
o I
N
@
> 04k
o
et
e
o
- O01F

i ! 1 ]

25 5 10 20
Fork length {(cm)

Figure 1. Relationship between logio(territory size) and fork length (cm) for fish from a variety
of studies reported by Grant and Kramer (1990), including a separate regression for brook trout
(dashed line) which falls within the 95"% confidence interval of the overall regression (solid
line). See Grant and Kramer (1990) for description of individual studies (numbered points).

While experimental observations are not always possible to obtain for particular systems,
natural observations as part of monitoring programs provide a second way to estimate maximum
density. When numerous estimates of local density are available for particular habitat types, the
upper percentiles can be used as a measure of maximum density (see quantile regression
section). For example, Beechie et al. (2005) used data from boat electrofishing surveys on
mainstem units of the Skagit River in Washington State to determine habitat preferences for
various wild salmonids. These data could be used to estimate habitat capacity in mainstem
reaches. One of the most prevalent species is Chinook salmon (Oncorhynchus tshawytscha),
which may utilize mainstem environments for days, weeks, or months before migrating as sub-

yearling fry or yearling smolts. While movements of older fish into tributaries might preclude
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use of these data to estimate long-term freshwater rearing capacity, the data are appropriate for
estimating habitat capacity at the fry life stage. This stage represents the most populous life stage
for Chinook salmon (millions in the Skagit River), and the sampling captures the habitat types
most relevant for this stage (mainstem habitats used following emergence from redds).
Electroshocking was performed throughout the Skagit mainstem, including lower reaches to
which migrant fry might move after rearing upstream. Any estimation of maximum density
might be sensitive to density-dependent migration (sensu Greene and Beechie 2004), so use of
these data to estimate capacity should be restricted to data points most closely associated with

spawning reaches.

Upon filtering data in this way, a broad distribution of densities of Chinook salmon fry
were obtained (Figure 2A), illustrating a huge range in density estimates (0.5- 15.5 fry/m?). Two
estimates of high density were obtained using the 90" and 95" percentile of the distribution of
densities, thereby eliminating the highest values which could represent outliers, non-equilibrium
values, or recording errors. When these data were put in the context of a habitat classification,
the 90" and 95" percentile scores increased as a function of habitat complexity and size-specific
habitat utilization: maximum density doubled as functions of cover class, preferred depth, and
preferred velocity (Figure 2B). Consequently, maximum density varied over eight-fold as a

function of these three axes describing habitat variation.
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Figure 2. A) Distribution of electroshocking data for Chinook salmon fry in the Skagit River, and
definition of high densities used to calculate maximum density. B) 90" and 95" percentile
maximum density as functions of cover type, flow velocity (m/s), and unit depth (m).
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Variation and uncertainty. Each parameter in the habitat expansion calculation may be subject to

variation both in terms of uncertainty in observations and temporal variation in the processes
influencing amount of habitat or maximum density. Capacity estimation via habitat expansions
can factor these in if care is taken to incorporate observation or temporal variation. For example,
Beechie et al. (2006) incorporated parameter uncertainty for number of redds per kilometer in
small streams and redd size and adults per redd in large rivers into Chinook salmon spawning
capacity estimates in the Skagit River basin, which produced spawner capacity estimates ranging

four orders of magnitude.

The estimate of capacity may be relatively static or dynamic depending upon what
parameters are used to differentiate habitat types. For example, if the habitat classification
includes units whose area varies with river flow (see below), capacity estimates can likewise
vary temporally as river flow increases or decreases. Estimates of capacity using habitat
expansions are more sensitive to uncertainty in maximum density estimates as opposed to habit
area values (Beakes et al. in prep), primarily because habitat area estimates do not vary

significantly compared to densities of fish occupying those habitats.

Applications. On their own, habitat expansions to estimate capacity may be used to document
whether particular life stages or habitats are likely limiting production. For example, Beechie et
al. (2006) estimated spawning capacity for six populations in the Skagit River. Spawning
capacity was calculated based on areal estimates of spawning habitat in mainstems and
tributaries, and estimating maximum number of adults that could spawn in this habitat based on
redd density, redd area, and adults per red. Each of these estimates is subject to variation, so
Monte Carlo simulations incorporating multiple estimates of these parameters were used to

estimate the range of possible spawning capacity. These values were compared to annual
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estimates of the number of spawners by population, and only one of the six populations exhibited
> 1% overlap between capacity-level and observed number of spawners. These results provided
strong support for the idea that spawning habitat is not limiting population dynamics in this

system.

Two additional applications of habitat expansions take advantage of multiple estimates of
capacity to deduce habitat-based limitations across the life cycle. One of the most common uses
recently is ascertaining which freshwater habitats and life stages limit population sizes of

salmon. For this purpose, the equation takes the form

CLs = Z?:o a;d;S; s (Ea. 2)

where LS indicates a specific life stage and s indicates survival from that life stage to smolt. This
formula can be used to compare capacities across life stages without linking life stages in a life-
cycle model (Reeves et al. 1989, Beechie et al. 1994). Using this approach, Beechie et al. (1994)
deduced that summer rearing habitat availability likely limited coho salmon production in the
Skagit River basin. However, current summer and winter rearing capacities were similar
(980,000 potential smolts from summer rearing habitat and 1,170,000 potential smolts from
winter rearing habitats), indicating that restoration of summer rearing habitat might soon result in
winter rearing habitats becoming the limiting factor. The analysis also showed that the greatest
restoration potential was in floodplain and delta habitats, and that restoring wood and pools in
small streams would likely result in a relatively small benefit to the coho salmon population.
Removing migration barriers would also provide a relatively small benefit, although it may be
more cost effective than wood restoration because there are relatively few barriers to remove

compared to hundreds of kilometers of wood and pool habitat to restore.
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Habitat-based expansions of capacity may also be used in dynamic life cycle models. In
this way, a life-cycle model estimates habitat capacity at each life stage, and links the life stages
using survival to the next life stage or migration to new habitats (e.g. Moussalli and Hilborn
1986, Greene and Beechie 2004). Habitat expansions represent capacity parameters in Beverton-
Holt models determining patterns of mortality or movement in the system. For example, Greene
and Beechie (2004) used capacity estimates from habitat expansions at different life stages to
parameterize a life cycle model for Skagit River Chinook salmon. These results revealed that
under assumptions of density-dependent movement, restoration in the tidal delta maximized

benefits to adult production.

Habitat expansions are used in a similar context for a life cycle model evaluating the
California Water Fix (nee Bay-Delta Conservation Plan) for Winter-run Chinook salmon
(Hendrix et al. 2014). This model evaluates transitions of salmon through several habitats for
which productivity and capacity estimates are computed by multiple sub-models. It
conceptualizes life history variation (fry and parr using freshwater, floodplain, delta, and
nearshore habitats) as an outcome of density-dependent movement, which are determined in part
by habitat expansions of freshwater, delta, and nearshore rearing habitat capacity. Due to the life
history and model complexity, productivity and capacity parameters are estimated on a monthly
time step. Capacity of floodplain and mainstem habitats are calculated based on habitat
expansions using classification of high and low quality depths and velocities from the
Sacramento HEC-RAS model (Singer and Dunne 2004). Habitat classifications of tidal delta
habitats are based on river gage height, channel type, and cover class, while classifications of bay
habitats are based on salinity level (a function of river flow), shoreline habitat type, and depth.

Maximum density values were derived from analysis of capacity in Skagit River, delta, and
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nearshore habitats, recognizing that the Skagit may under-represent capacity compared to
Sacramento given much lower primary productivity, but that the Sacramento system may be
biased high due to inputs of hatchery fish. Areal estimates of capacity in the delta were further
limited by applying the results of an occupancy model that predicted probability of presence
using data from beach seines in the Sacramento delta based on river system (Sacramento R. or
San Joaquin R.), distance of sampling site to its mainstem (m), physical channel depth (m),

physical channel width (m), and DSM2 water stage (m).

Because capacity was estimated for each habitat using time-varying parameters such as
river flow, gage height, and salinity, capacity could be predicted on a monthly and annual basis.
Habitat capacity increases as a function of flow within river, delta, and and nearshore
environments, although capacity within particular habitat types (e.g., mainstem rearing habitat)
can decline as a function of flow because of the increased availability of shallower habitat types.
The resulting habitat expansions suggest that substantial capacity exists for juveniles within the
Sacramento River and delta regardless of whether 90" and 95" percentiles of maximum density
are used (Figure 3), although the vast majority of capacity is of lower quality. This pattern is
particularly pronounced in the delta, for which 0.3% of the capacity on average was high quality

on all three axes.
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Figure 3. Estimated habitat capacity in mainstem, floodplain (Yolo Bypass), delta, and nearshore
habitats of the Sacramento River by month (01 = January) and year (1980-2010) using 90" and
95" percentiles of maximum density. Bay capacity is extremely low compared to capacity in
other habitats, which is why it is not readily observed on the graph.

Quantile regression

Advances in empirical modeling combined with widespread computing power now allow
ecologists to deal with many of the shortcomings of standard linear regression approaches that
have been employed for decades. Quantile regression approaches to estimating carrying capacity
are an empirical approach to soliciting fish-habitat relationships from observed data, and using

those relationships to predict capacity at the reach scale (Valavanis et al. 2008, Hegel et al.
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2010). It relies on observations of abundance, density or biomass, and a variety of habitat metrics
as covariates. For stream-dwelling juvenile fishes, these habitat metrics might include pool
frequency, large woody debris density, substrate size, riparian cover, or a myriad of other
possible metrics. Typical regression estimates how the mean of the response variable changes as
various covariates shift, but quantile regression estimates how each quantile (e.g. 101, 50", 90,
etc.) shifts, in essence providing a predicted distribution of the response variable for a given set
of habitat covariates (Koenker and Bassett Jr 1978). Selecting an upper quantile (e.g. 90"
percentile) of this distribution as a proxy for carrying capacity provides a means for predicting

capacity from a suite of habitat covariates.

The theory behind using quantile regression to estimate carrying capacity is that although
capacity may be influenced by some components of the habitat that we can measure and
incorporate into a quantile regression, there are often other, unmeasured, factors that limit the
abundance or density of fish from reaching that capacity (e.g. presence of competitors, predators,
spawner abundance, prior temperature, etc.). For a set of measured sites, only a subset may be
near capacity, and how that upper quantile of fish density responds to changes in habitat
characterizes the relationship between carrying capacity and habitat. Therefore, the upper
quantiles may have a different relationship with a particular habitat metric than the mean.
Viewed through the lens of quantile regression approaches, carrying capacity represents the
maximum number or density of fish that sites with a particular suite of habitat characteristics can
support. Therefore, quantile regression predictions pertain to the spatial scale at which fish
densities are made. Once a quantile regression model is fit with data, predictions can be made
anywhere the same set of habitat metrics have been collected, regardless of whether fish

abundance data are available or not. However, predictions of capacity at the stream reach scale
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may not be useful in a management or life-cycle model context. Using some form of
extrapolation model (e.g. linear regression model with covariates, spatial stream network model,

etc.) the reach-scale capacity estimates can be scaled up to the stream or watershed scale.

An example of the power of quantile regression to solicit empirical fish-habitat
relationships is found in Dunham et al. (2002), and summarized in (Cade and Noon 2003). The
authors investigated the functional relationship between densities of cutthroat trout (O. clarki)
and the ratio of stream width to depth using data from 71 sites across 13 streams and 7 years.
That ratio was chosen as a measure of the integrity of stream habitat. Quantile regression
analysis estimated a negative relationship for the upper quantiles (70" percentile), while a
weighted least squares model indicated no relationship between the mean cutthroat trout density
and stream width to depth ratio (Cade and Noon 2003) (See Figure 4). Without the quantile
regression approach, the authors would have found no fish-habitat relationship. Other examples
include quantile regression being used to determine the distribution of sole (Solea solea) nursery
grounds (Eastwood et al. 2003), and to investigate the limiting effect of temperature on carrying

capacity for three life stages of brown trout (Salmo trutta) (Ayllon et al. 2013).
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Figure 4. From Cade and Noon (2003), the points depict data from Dunham et al. (2002) with
0.95, 0.75, 0.50, 0.25 and 0.05 quantile estimates (solid lines) and least squares regression
estimates (dashed line).

In the same way that quantile regression is an extension of least-squares regression,
quantile regression forests (Meinshausen 2006) are an extension of random forest models
(Breiman 2001), which are themselves an alternative to standard regression approaches. Random
forests is a machine-learning technique, based on classification and regression tree models,
which while fairly new to the ecological community is gaining traction (Prasad et al. 2006,
Cutler et al. 2007, Olden et al. 2008, Kampichler et al. 2010, Knudby et al. 2010, Evans et al.
2011). A random forest model consists of an ensemble of many (>500 or 1000) individual
classification and regression trees, each built on a subset of the list of possible predictor
variables. Within each tree, the data are partitioned into successively smaller sets by selecting

split points among the subset of predictors found in that tree. These split points are chosen to
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maximize the homogeneity between each group with respect to the response variable. As part of
the random forest algorithm, all possible split points are examined across all possible predictors,
and the best one chosen at each step in the algorithm. Random forests can account for non-linear
relationships between the response and predictor variables, and naturally incorporate interactions
between the predictor variables, two common features of ecological datasets (Breiman 2001).
Although the mean predicted response is found by averaging the results of all trees, various
quantiles of the predicted response can also be extracted from the distribution of tree predictions
(Meinshausen 2006). While quantile regression has been used to solicit the effects of limiting
factors on carrying capacity, and random forests have been employed to investigate animal-
habitat relationships, to our knowledge an example of using quantile regression forests to
estimate carrying capacity has not been described in the ecological literature, although they were
used to describe suspended sediment concentration within a stream network (Francke et al.

2008).

Data Requirements. The data requirements for quantile regression include some form of fish

abundance, density or biomass (fish, fish/m, fish/m?, fish/m?, etc.) as the dependent variable, and
a suite of habitat covariates (e.g. pool frequency, large woody debris density, median substrate
size, temperature, etc.) as the independent variables. The choice of whether to apply a quantile
regression or a quantile regression forest model may be influenced by the dataset. Standard
quantile regression requires the analyst to make some assumptions about the form of the fish-
habitat relationship (e.g. linear, quadratic, exponential, etc.) and whether to include possible
interactions between predictor variables. In return, quantile regression models can be fit with
relatively little data. Quantile regression forests on the other hand, like other machine-learning

methods, are more “data-hungry”. In return for automatically incorporating predictor
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interactions, and allowing the analyst to not specify the form of each fish-habitat relationship,
they require more data points to provide reliable estimates (e.g. 50 — 500+, depending on how
many predictor variables are included). Both of these methods do not require any borrowed

parameters, all parameters are estimated through this approach.

To extrapolate to larger spatial scales than the reach, some information about the length
or area (or volume) of the stream network is needed. In addition, an extrapolation model may

benefit from including covariates that are available across the entire stream network.

The quantile regression approach makes several assumptions. The first is that fish
densities respond to habitat characteristics in similar ways across the study sites. The second is
that there exists some unmeasured limiting factor preventing many of the sites from reaching
capacity. For stream-dwelling fishes, this could include the presence or abundance of other
species, spawner abundance in the previous year, other factors that impact egg-to-juvenile
survival, temperature, etc. Related to this is the assumption that at least some of the study sites
are at or near capacity. If this assumption is not met, then whatever upper quantile is chosen as a
proxy for capacity will underestimate the carrying capacity. The quantile chosen is also
important. The higher the quantile, the better it is as a proxy of carrying capacity, but this also
leads to more uncertainty in the predictions, because the highest quantiles are being estimated
from only the top few percent of the data points. In our experience, the 90" quantile can be

reliably estimated while providing a good, if slightly conservative, estimate of carrying capacity.

Incorporating Uncertainty, Method Validation, & Future Work. When using quantile regression,

standard errors of the coefficients for a particular quantile can be calculated in several ways,

including an appeal to asymptotic theory or bootstrapping (Koenker and Hallock 2001), although
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bootstrapping is preferred due to the necessity for fewer assumptions. Because quantile
regression forests, like random forests, are non-parametric, there is no asymptotic theory to
apply, but bootstrap estimates of standard errors are available (Sexton and Laake 2009). Because
these methods rely on estimates of fish abundance or density, which are often generated with
their own standard errors; an additional bootstrapping step may be applied to account for the

uncertainty in the abundance estimation.

Validating estimates of carrying capacity at the reach scale are difficult, since capacity is
rarely observed. However, comparisons with other methodologies can be useful. For example,
reach scale estimates of capacity can be produced by bioenergetics models such as NREI, and be
directly compared to the estimates of quantile regression. For some systems, where reliable, long
time-series of spawners and parr or smolts exist, estimates of quantile regression reach scale
capacities that have been extrapolated to the stream or watershed scale can be compared with S-

R model fits.

Quantile regression as an approach to estimate carrying capacity has been applied rarely
to date, but the method is full of potential. Although data must be collected from a number of
sample sites, it can be collected within a year or several years, rather than requiring a long time-
series as fitting spawner-recruit curves does. With enough data, it allows investigators to derive
fish-habitat relationships without making many assumptions. Capacity estimates can then be

scaled up and utilized by management or in life-cycle models.

Structural equation models

Introduction. A general approach to most fish habitat monitoring programs is to measure a suite

of habitat conditions and infer how those conditions change (a) over space and time and (b) in
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response to alternative management strategies or policies. The importance of habitat condition to
fish can either be gleaned from extensive literature on fish-habitat relationships (Jackson et al.
2001) or empirically determined by relating fish response to habitat conditions in a statistical
model (Fausch et al. 1988). Most fish habitat monitoring programs occur as observational studies
in natural systems rather than as controlled experiments, making it challenging to predict how
management decisions directly translate into habitat conditions, or how habitat conditions
influence fish response. This exemplifies the “correlation does not imply causation” problem of
observational studies, where observed correlations among predictors (e.g., habitat conditions)
and responses (e.g., fish performance) cannot be relied upon to infer mechanisms or direct causal

effects (Shipley 2002).

Structural equation modeling (SEM) is a multivariate approach that emerged from various
scientific disciplines and builds upon numerous statistical techniques such as regression, path
analysis, factor analysis, and latent variables (Grace 2006). The SEM approach can help address
the problems mentioned above, and is one potential approach to estimating tributary habitat
carrying capacity. To our knowledge, SEMs have not been employed to estimate carrying
capacity of individual fish species. However, the approach has been used by aquatic ecologists
for understanding patterns in biodiversity (Belovsky et al. 2011, Duffy et al. 2016), water quality
and temperature (Zou and Yu 1994, Isaak and Hubert 2001), ecosystem indicators (Arhonditsis
et al. 2006, Maloney and Weller 2011, Irvine et al. 2015) and fish performance (i.e., growth)

(Budy et al. 2011).

The advantages of SEM for observational studies and differences from conventional univariate
and multivariate approaches are reviewed in (Grace 2008). SEMs graphically relay complex

hypotheses about how system components interrelate in a manner easily comprehended by
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stakeholders (Figure 5). Theoretical knowledge is typically used to develop models, which
represent alternative hypotheses about processes leading to observed patterns in the data. The
approach is based on the analysis of covariance relations, with maximume-likelihood estimation
being the most common method for obtaining solutions; however numerous procedures can be
used including Bayesian estimation. Several recent advances to SEMs make it an ideal approach
for non-normal or nonlinear data, categorical responses, and hierarchical data structure. Overall,
the approach is well suited to elucidating how different processes work in concert, how effects
propagate through as system, and evaluating the relative importance of different stimuli (Figure )

(Wu and Zumbo 2008, Grace et al. 2010).
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Figure 5. Language for causal models with an example of salmon habitat and resulting fish
densities. Paths (arrows) between variables (circles) represent the direction of influence. Terms
on the left in bold type relate to the variable in red in the adjacent diagram. Mediators influence
how an independent variable affects a dependent variable. Moderators alter the direction or
strength of an effect of one variable on another. Confounders are associated with both
independent and dependent variables. Covariates are associated with a dependent variable only.
Structural equation modeling (SEM) is well suited to analysis of these complex relationships.
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In the Upper Grande Ronde River subbasin, SEMs are one potential approach to estimating
tributary rearing capacity of juvenile Chinook Salmon. For this purpose, capacity is defined as
the upper limit of abundance or density of a particular life stage under current conditions. As
such, approaches that estimate the uppermost distribution of fish density should be used.
Traditional SEMs, like most other regression-based approaches, estimate the influence of
predictor variables (e.g., habitat condition) on the average value of a response variable (e.g., fish
abundance). However, recent advances in ‘piecewise SEM’ permit non-normal distributions,
random effects, and different correlation structures using local estimation (Lefcheck 2016);
piecewise SEM could employ quantile regression to estimate the upper 90th percentile of fish
density as a proxy for carrying capacity (see quantile regression section of this report).
Alternative proxies for carrying capacity could include modeling the maximum observed fish
densities in years with highest previous-year spawner returns; standardizing fish density
estimates by previous-year spawner returns when that information is known; or using an SEM
describing mean rearing density as a scalar to capacity estimates derived from other methods,
such as a Beverton-Holt curve fit to empirical data. Because aquatic habitats across the Columbia
River basin have been in a state of degradation for several decades (Mclntosh et al. 2000), and
because it is problematic for migratory species to navigate over man-made barriers (Humphries
and Winemiller 2009), values of carrying capacity based on contemporary, empirical data should

be considered conservative estimates at best.

Application. In the Upper Grande Ronde River, we developed a fish-habitat SEM (Figure 6)
using data from the Columbia Habitat Monitoring Program (CHaMP 2016) coupled with snorkel
surveys of salmonid densities (McCullough et al. 2015). Snorkel counts at each site were

expanded using a correction factor developed from paired mark-recapture and snorkel survey
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data to account for fish that were not observed by snorkelers (Jonasson et al. 2015). Higher
frequencies of large woody debris and pool availability positively influenced Juvenile Chinook
Salmon densities as expected. Large wood had both a direct influence on fish density and an
indirect effect through its positive association with pools. To evaluate the total effect of wood on
fish relative to other factors in the model, the sum of the direct standardized path coefficient
between wood and fish (0.20) and product of the path of wood on pools (0.47) and pools to fish
(0.19) yields a coefficient of 0.29, which is greater than the direct effect of wood on fish,
underlining the importance of the indirect role of wood in forming pools used by fish. Landscape
context was also an important consideration in this model: reaches with larger cumulative
drainage area were strongly associated with higher fish densities, more pools, and lower wood
frequency. The effects of local-scale habitat conditions on fish density would have been obscured
without incorporating a variable accounting for the position of reaches in the stream network.
Mossop and Bradford (2006) used a similar conceptual model explaining associations among
juvenile Chinook salmon density, wood, pools, and reach gradient in small tributaries of the
upper Yukon River, Canada. Their study was based on visualizing pairwise correlation
coefficients, however, and did not account for the variance-covariance structure inherent in

modern SEM.

SEM’s provide a flexible structure that allows for more data types and structures than habitat
expansion or QRF methods. For example, the combination of continuous, categorical, and latent
variables can be used in a single SEM. Because models are developed using a priori ecological
knowledge—often in concert with local land managers—predictions of capacity estimates can be
developed for relevant, real-world management applications. The value of SEM’s becomes most

apparent when increasingly complex data are available, particularly at multiple spatial scales.
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Under those conditions SEM’s can incorporate interactions and covariance that habitat expansion
or QRF cannot, while producing appealing and approachable visualizations of factors driving or
limiting fish abundance. However, many watersheds currently lack the habitat and fish data

needed to utilize the SEM approach and habitat expansion or QRF may suffice.
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Figure 6. SEM results linking cumulative drainage area with longitudinal thalweg depth profile
(a proxy for pool frequency), large wood frequency within the bankfull channel, and juvenile
Chinook density (fish/m). Direction of arrows indicates the hypothesized direction of causal
effect; whereas the color, shade, sign, and magnitude of the standardized path coefficients
indicate the direction and strength of the relationship (green is positive, red is negative,
coefficients closer to |1| and darker shade of arrow are stronger). Values in double-headed arrows
are amount of variance explained for dependent variables (analogous to R? in linear regression).

Ecohydraulic and mechanistic habitat models

Introduction. A limitation of empirical models is the difficulty of scaling in both data collection

and prediction. Empirical models are only useful to estimate the capacity of a system if
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observations of fish abundances have been made at or near capacity, a fact that may hamper
many systems where contemporary abundances are low or non-existent (e.g. impounded by a
dam). Although empirical estimates allow for some estimate in the uncertainty of predictions,
they are limited by the extent of the data, and cannot make predictions for novel conditions.
However, by definition mechanistic approaches employ a series of functional responses to
predict fish abundance under a range of conditions. For stream fishes, two types of mechanistic
models are generally employed: habitat suitability index (HSI) and net rate of energy intake
(NREI). Historically, the term HSI has been cast broadly to include models which may be more
empirical or even qualitative (e.g. expert opinion) as a way of relating habitat characteristics to
capacity. In this context however, HSI will be used to describe models that employs applies
suitability curves for a range of habitat characteristics with estimates (either modeled or
measured) of those characteristics at the scale of interest. In these instances a habitat suitability
index model is constructed from an understanding of the basic habitat requirements of a species,
forming a “bottom up” approach by placing a floor on the capacity of a habitat that can be further
reduced through additional habitat requirements. For salmonids, most HSI models are
constructed from a hydrodynamics model (e.g. PHABSIM) that breaks the available habitat into
cells, the grain of which is determined by the resolution of the hydrodynamics model.
Hydrodynamics models can therefore provide estimates of basic habitat parameters (velocity,

depth, etc.) under various flow regimes for each modeled cell.

Relationships between the abundance of fish and their habitat have most commonly been
established through empirical methods (Rosenfeld 2003). These models are only useful for
estimating carrying capacity when abundances are near their limits, although approaches like

quantile regressions (see Quantile regression, above) may be able to establish these relationships
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when carrying capacity is at least occasionally reached. While empirical based models are an
efficient approach to quantifying relationships and detecting patterns, their strength is generating
hypotheses about variables of importance rather than being used in predictions and testing
hypotheses. Empirical models often lack predictive ability because: they often contain many
variables yet are based on low samples sizes; assume no measurement error of the predictor
variables; relate to fish abundance estimates that are also often very imprecise; and often lack
validation (Fausch et al. 1988). Commonly used multiple regression approaches assume linear
relationships, do not contain higher order interactions, cannot identify threshold effects, or
effectively deal with missing data. However, machine learning approaches are gaining
popularity because of their ability to overcome many of these issues (see quantile regression)
Empirical models also typically lack the experimental manipulations needed to identify and
validate causal mechanisms, and thus understanding why these complex assemblages of
variables interact to describe fish habitat requirements is extremely difficult. Drift-foraging
bioenergetics models, however, are often based on experimental or comparative studies
confirming patterns described by mathematical models based on ecological theory (Fausch 1984,
Hughes and Dill 1990). Therefore, these models are not only potentially more robust for
predictions, but they allow for the evaluation of alternative management scenarios (Nislow et al.
1999, Hayes et al. 2016, Wall et al. 2016). However, due to their complexity, they can be data
intensive and difficult to calibrate and validate (Piccolo et al. 2014, Rosenfeld et al. 2014).
Microhabitat models, such as habitat suitability models, straddle empirical and drift-foraging
bioenergetics approaches (Rosenfeld et al. 2016). Proximate cues that fish are responding to such
as depth, velocity, and substrate, describe habitat quantity and quality and can in part be driven

by mechanistically based hydraulic models. However, the rule sets used in building these
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relationship are based on fish preferences of these variables which are often site-specific, making
extrapolation difficult or uncertain (Rosenfeld 2003). Here we describe two ecohydraulic

approaches to evaluate carrying capacity of adult and juvenile salmonids.

Hydraulics as the habitat template

Much of the fish habitat information used to develop empirical fish capacity models is coarsely
resolved, often based on surrogate variables for the actual environmental cues to which fish are
responding. For example, correlations between fish density and geomorphic units (e.g. pools,
riffles) are commonly used to estimate fish abundance (Fausch et al. 1988). Fish are likely not
responding to the geomorphic units, but rather to spatial patterns of depths and velocities.
Additionally, relationships between these coarser habitat features and discharge are difficult to
quantify and thus cannot inform evaluations flow or restoration alternatives. Therefore,
ecohydraulic fish habitat models have been developed to potentially allow more detailed or

mechanistic questions to be addressed (Hayes et al. 2007, Wall et al. 2016).

Hydraulic models provide spatially explicit estimates of depth and velocity across a reach. One-
dimensional (1D) models provide longitudinal estimates of velocity and depth and are very
commonly used when channel cross-sectional data is collected to describe channel morphology.
While 1D hydraulic models are commonly used in fish habitat applications, 2D (adds lateral
velocities), and 3D (adds depth and lateral velocities) models increase realism by providing more
detail on the velocity vectors to which fish respond (Dunbar et al. 2012). In order to develop
reach-level hydraulic models, spatially explicit information on channel planform, channel
roughness, discharge, and surface water elevation is required. Few fish habitat monitoring

programs collect the data necessary for developing 1D hydraulic models, much less higher
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dimensional models. One exception is the Columbia Habitat Monitoring Program, where
topographically stratified XY Z data points are collected, via a total station or real-time kinematic
GPS, that are interpolated to create high resolution (i.e. 10 cm) digital elevation models (DEMs)
of the water surface and stream channel (Bangen et al. 2014a). These data are used to create 2
and 3D hydraulic models, which produce depth and velocity estimates with equal or less error
than field-measured values (Pasternack et al. 2006) thereby creating a valuable high resolution
tool for fish habitat assessments. The reach DEMs, and therefore subsequent hydraulic models,

can also be manipulated to represent expected changes due to restoration (Wall et al. 2016).

Microhabitat Models

Habitat suitability index models (HSI) in conjunction with hydraulic models have been used
extensively to evaluate how changes in stream discharge influence the availability of usable
microhabitats for several species of fish across multiple life stages (Rosenfeld 2003). PHABSIM
is the most popular of these models (Souchon and Capra 2004). Generally, frequencies of fish
use (e.g., observed through snorkeling) of particular depth, velocity, substrate, and occasionally
cover values, are divided by the available distributions for these variables to develop preference
or habitat suitability curves. While these curves represent preferences rather than factors directly
linked to fitness, these are the microhabitat environmental cues which are likely responsible for
the behavior observed in fish. The habitat suitability curves are then used to weigh measured or
modeled habitat features in a reach to estimate weighted usable area (WUA). As higher
resolution data within reaches become increasingly more feasible to collect, models can describe
detailed spatial patterns of microhabitat quantity and quality (Figure 7). Further, the carrying
capacity of a modeled reach can be estimated by dividing WUA by the territory size required by

an individual (Keeley and Slaney 1996, Ayllén et al. 2012, Cramer and Ceder 2013).
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A criticism of HSI models is that they are site-specific, making extrapolation to other locations
unreliable. For example, if observations of depths used by salmonids to develop habitat
suitability curves come from a larger stream, this might incorrectly suggest that salmonids cannot
use smaller streams where maximum depths are less than the minimum depths used by fish in the
larger stream. A more robust approach is to develop more generalized habitat suitability curves
using fuzzy inference systems (Ahmadi-Nedushan et al. 2008). Fuzzy inference systems (FIS)
are founded on fuzzy set theory and fuzzy logic (Zadeh 1965). FIS are intuitive, flexible in
adjusting model parameters and variables, are more robust with imprecise data, can incorporate
expert knowledge, and can represent more complex multivariate relationships than traditional
HSI models (Jang and Gulley 2014). When combined with high resolution hydraulic model
outputs, FIS-based habitat models also provide a spatially explicit depiction of habitat suitability
and an estimate of WUA, which can be used to estimate carrying capacity as described for

traditional HSI models above.

Another criticism of HSI models, is that they do not include important variables such as
temperature and food availability. For example, (Rosenfeld et al. 2005) found that habitat
suitability curves derived in artificial stream channels poorly predicted habitat use in the same
channels after prey resources were experimentally manipulated. However, bioenergetics model
predictions that included prey and temperature variables accurately predicted habitat use across
the prey resources tested. Because spawning salmon are no longer feeding while occupying
redds, HSI models can provide accurate predictions of potential redd locations (Wheaton et al.

2010, Kammel et al. 2016).
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Chinook Habitat Suitability
Big Springs, Lemhi Basin, ID, 2012
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Figure 7. Maps of Chinook salmon juvenile rearing (upper) and adult spawning (lower) HSI
model output. Data are for 2012 site visit of Big Springs Creek, Lemhi River basin, ldaho.
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Drift-foraging models

Drift foraging models were originally developed based on optimal foraging theory to describe
the feeding behavior and location position of drift feeding salmonids, positing that fish choose
locations with optimal energetic value (Hughes and Dill 1990, Hill and Grossman 1993). A drift-
feeding fish’s net energy intake (NEI) or net rate of energy intake (NREI) is energy gains
through capture and consumption of drifting invertebrates minus energy cost through swimming
to maintain a foraging position. These models were initially validated with intensive

observations of feeding locations (Fausch 1984, Hughes and Dill 1990, Addley 1993, Hill and
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Grossman 1993, Guensch et al. 2001), but have also been used to successfully predict growth

and abundance (Nislow et al. 2000, Hayes et al. 2007, Urabe et al. 2010, Wall et al. 2015).

The NEI model incorporates data on depth, focal velocity, prey abundance (drifting
invertebrates) to predict prey encounter rates, capture success, and consumption rates at locations
throughout the modeled environment. These variables can simply be measured throughout a
reach and converted to NEI (Guensch et al. 2001, Urabe et al. 2010). Alternatively, depth and
velocity results from hydraulic models (described above) can also be used to estimate these
inputs (e.g. Wall et al. 2015), and additionally drift transport rates (e.g. Hayes et al. 2007).
Bioenergetics models estimate gross energy input (GEI) from prey consumed and swimming

costs (SC) at the focal velocity under a given temperature, with GEI-SC=NEI.

Many NEI-type foraging models follow the approach described by Hughes and Dill (1990).
Foraging volumes at all focal points, or every location in a grid of hydraulic model output, are
estimated using the reaction distance of the foraging fish (often determined in the laboratory) as
the radius of the search area in a stream cross section times the velocity. This search area can be
truncated by either water depth, or the maximum capture distance as a function of water velocity
to produce a capture area (Hughes and Dill 1990, Hayes et al. 2007). The capture volumes
multiplied by the drift density provides the instantaneous prey capture rates and, along with the

energy content of the prey, a GEI at each modeled cell within the stream.

To estimate carrying capacity, the highest NEI value on each modeled cross section is compared
to a user-defined NEI threshold and locations meeting or exceeding the NEI threshold (e.g.
NREI>0) receive a fish (Hayes et al. 2007, Wall et al. 2015). A minimum distance between fish

is set by the fish territory size. Fish are placed at upstream cross sections first and downstream
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drift predictions are then augmented to reflect consumption of drifting invertebrates by fish
placed at upstream cross sections (Hayes et al. 2007). Placement proceeds downstream until the
last cross section has been evaluated for fish placement, with carrying capacity equal to the sum

of all fish in the reach.

NEI models have also been used to evaluate the effects of flow management and stream
restoration on distribution, growth and abundance of drift foraging salmonids (Nislow et al.
1999, Hayes et al. 2016, Wall et al. 2016). Wall et al. (2016) recently demonstrated how a NEI
model could be used to describe both a predicted and observed response to woody structures on
energy availability and abundance changes for steelhead. They first conducted a topographic
survey (Bangen et al. 2014b) and hydraulic model-based NREI assessment on a reach pre-
restoration. They next manipulated the initial DEM to represent the intended restoration design.
Woody structures were then added to the reach and surveyed the subsequent year and the same
analyses were repeated. Following the restoration, both the predicted and observed changes to
the DEM from the wood addition created energetically favorable areas, and an increase in
average NREI and carrying capacity. As example of how this approach can be up-scaled to
address population level predictions, this same approach was recently used in overall life-cycle
assessment of steelhead population persistence following a large-scale restoration effort in the
Middle Fork of the John Day River in Central Oregon (McHugh et al. in revision or Wheaton et

al. in press).

Both microhabitat and drift-foraging bioenergetics models are limited by their complexity and
sensitive to large number of assumptions and inputs. The input data can be labor intensive to
collect and subject to observer variability. Recent advances in technology and methodologies

have greatly reduced both labor costs and observer variability in collecting river bathymetry
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(Bangen et al. 20144, Bangen et al. 2014b) allowing the use of higher order hydraulic models.
Remote sensing approaches are beginning to allow for large scale development of DEMs and
hydraulic models (Kammel et al. 2016) that can rival efficiencies of even traditional rapid fish

habitat assessments (Hankin and Reeves 1988).

Samples of invertebrate drift are inherently noisy and are generally not included in fish habitat
monitoring protocols. However, this habitat metric was recently demonstrated to be highly
relevant to salmonids (Weber et al. 2014), and of moderate repeatability (Weber et al. in press)
to other habitat metrics commonly collected and used in empirical models. Estimates of gross
primary production over reaches and even networks may be used as a surrogate or predictor of
invertebrate drift (see above Ryan’s section; Saunders et al. submitted) allowing for potential

greater efficiencies in data collection or estimation for model input information.

The computation power required to run both the hydraulic models and drift-foraging
bioenergetics models, until recently, limited model evaluations to relatively limited model
domains (e.g., a single pool, Hayes et al. 2007). Wall et al. (2015) were able to increase the
spatial extent of this approach to several reaches containing multiple geomorphic units. Slight
mathematical changes, changes in the programing language, and use of low cost, high volume
cloud computing services has allowed this model to be implemented across hundreds of reaches
with about the same effort as previously for a single channel unit (Bouwes, personal obs.).
Overcoming computational limitation greatly expands the potential for the improvement,

validation, and widespread use of such models.

While ecohydraulic models summarize hugely important features of fish habitat, they obviously

do not include other biotic or abiotic considerations that can limit carrying capacity. For
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example, inter- and intra-specific competition can reduce resources that might not be accounted
for in certain models. However, some of this is partially implicit when using empirical estimates
of territory sizes and drift data. Additionally, predators can have large influences on fish
behavior or abundance and therefore consideration of the effects of cover and the presence of
predators could potentially influence carrying capacity. More complex models have been
developed to incorporate some of these concepts (Railsback et al. 2013). Some of these variables
have been or could be added to microhabitat models to develop of habitat suitability or FIS
functions. Finally, these models could be used to synthesize multiple habitat feature into an
interpretable single metric that could then subsequently be used in multivariable empirical
models. For example, (Kawai et al. 2014) found that while NEI predicted fish abundance, the
addition of cover as a separate variable improve model predictive ability. Whether ecohydraulic
models are powerful enough to describe the most important features of fish habitat that limit
carrying capacity in most situations or if other mechanisms or variables must also be
incorporated is currently being pursued and a fruitful area of fisheries science (Rosenfeld et al.

2014)
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Figure 8. From Wall et al. 2015. (A) Depth and velocity estimated from a 2.5D hydraulic model
(B) spatially explicit prediction of NREI based on foraging and swim cost models (C) predicted
locations of fish based on NREI values greater than zero and territory size.

Dynamic Food Web Models

Introduction and Application. Food web approaches to estimating capacity are rooted in the

fundamental laws of thermodynamics and mass balance (Gotelli 2001, Odum and Barrett 2005).
In other words, the production of any population cannot exceed the production and availability of
that populations prey (First Law of Thermodynamics). This upper bound is further constrained
by the reality that the some of the energy from this food is lost as it is transformed into consumer
biomass (Second Law of Thermodynamics). Food web approaches to estimating biological
capacity take advantage of these fundamental bounds. Consequently, if food or prey availability
is known, as well as the efficiency by which consumers can convert that prey to biomass

(assimilation and production efficiencies), an “energetic” estimate of capacity can be determined.
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There are three main approaches for synthesizing this information into a capacity estimate for
fish. First, are simple trophic level fractionation models (Elton 1927, Lindeman 1942, Odum and
Barrett 2005). This approach assumes that capacity at a given trophic level is some fraction of
the production at a lower trophic level. Many studies, for instance, assume that 10% of the
biomass produced at a given trophic level is passed on the next higher level. For instance, if only
basal algal production was known and fish were two trophic levels above this, then fish

production capacity would be 1% that of primary production (i.e., 10% X 10%).

The second approach is the trophic basis of production (Benke and Wallace 1980, Cross et al.
2011, Bellmore et al. 2013), which is an extension of the simple trophic level fractionation
model. The trophic basis of production approach embraces the reality that food webs are
complex, and that consumers may feed on a variety of prey items that vary in both quality and
quantity. By combining empirical information on prey specific production estimates with
information on consumer dietary proportions, as well as prey-specific assimilation efficiencies,
this approach allows for the quantification of the consumptive energy flows that exist between
predators and their prey. These quantitative food webs can not only be used to visualize energy
flow through the food web, but it can also be used to quantify energetic carrying capacity, and

how competitors influence this capacity (Bellmore et al. 2013).

Third, is dynamic food web modeling (Mcintire and Colby 1978, Yodzis and Innes 1992, Power
et al. 1995). Unlike the other methods this approach acknowledges that predators and prey are
dynamically linked, and that the availability of prey is also a function of consumption by
predators. Unlike the previous two approaches, this approach does not require estimates of food
availability. Instead, prey availability and consumer carrying capacity emerge from the predator-

prey dynamics included in the model. In their simplest form, these food web models are a series
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of linked Lotka-Voltera predator/prey equations (Getz 1993). By mechanistically linking the
demographics of web members (e.g., rate of consumption, mortality and respiration) to local
environmental conditions (e.g., water temperature, channel hydraulics), these models can be used
to predict equilibrium fish biomass dynamics for streams, which can be interpreted as an

“energetic” carrying capacity estimate.

Below, we describe a dynamic stream food web model termed the Aquatic Trophic Productivity
(ATP) model that can be used to estimate fish carrying capacity (Bellmore et al. 2017 , Figure 9).
Within the ATP model, capacity is defined as the maximum amount of fish a system can support
given available food resources and the efficiency at which fishes can convert those food
resources to biomass. Because this is an energetic estimate of capacity, output metrics could be
presented in unit of production (e.g., kg/year), biomass (e.g., kg), or abundance (#), depending

on the user/manager needs.

The ATP model mechanistically links the dynamics of the river food webs, and the resultant
performance of stream fishes, to (1) the physical and hydraulic conditions of the stream, (2) the
structure and composition of the adjacent riparian zone, and (3) marine derived nutrient delivered
by adult salmon (Figure 9). The modeling framework is founded on the assumption that the
general dynamics of stream food webs can be simulated if the dynamics of these environmental
factors are known (Vannote et al. 1980, Power and Dietrich 2002, Woodward and Hildrew

2002).

Specifically, the model allows energy to flow from the bottom-up, from basal resources (e.g., in-
stream primary producers, terrestrially derived organic matter) to aquatic invertebrates, and

aquatic invertebrates to fish. Reciprocally, these “bottom-up” organic matter flows represent
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losses of biomass imposed from the “top-down” (i.e., consumption). As with all ecosystems, the
modeled food web is an “open” system, in that energy and materials enter the system from
external locations (referred to as “subsidies”). In this case, these external inputs represent the
raw ingredients and subsidies that fuel the productivity of the food web, and include: (1) light
and nutrients, which provide the energy and materials necessary for the production of
periphyton; (2) lateral inputs from the riparian zone, which provide detrital organic matter (leaf
litter) as well as direct food resources for fish (terrestrial invertebrates); and (3), returning adult

salmon, which represent a source of marine carbon and nutrients (marine derived nutrients).

The ATP model was designed to explore how stream salmonids (specifically salmon and
steelhead) respond to alternative restoration strategies. That said, the approach is flexible and can
be adjusted to confront numerous problems and potential applications (e.g., climate change,
invasive species, local restoration goals, and watershed scale management). It can also be used

to identify and rank factors limiting fish capacity.

Data Requirements. Because the food web component of the ATP model is founded on basic

ecological (predator prey dynamics; Gotelli 2001) and thermodynamic (mass-balance) principles,
the framework of the model should be transferable across study locations. Moreover, it is
assumed that environmental factors mediate the dynamics within the food web. Thus, to
simulate food web dynamics at specific sites will simply require information about local
environmental conditions that are generally available (Table 1). This includes river discharge
(m3/s), water temperature (C), distribution of substrate size on the river bed (cm), proportion of
the stream shaded, total solar input (i.e. photosynthetically active radiation; pmol photons/m?/s),
proportion of the vegetation cover to account for allochthonous inputs, 1-dimensional channel

hydraulics, number of the adult salmon returning to spawn, and water quality measures (e.g.,
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turbidity, nitrogen and phosphorus concentration). In addition, it is useful to have estimates of
biomass for fish, aquatic invertebrates, periphyton, and terrestrial detritus to corroborate model
simulations. This information also allows model users to adjust the most sensitive model
parameters (e.g., parameters that control the predator/prey functional responses, assimilation
efficiencies, and strengths of self-interaction) to “fine tune” the model to better mimic food web

dynamics in the study location.

Although the ATP is a food web model, it is not assumed that food or any other specific factor is
limiting capacity. In fact, implicit in this approach is the idea that numerous things (both direct
and indirect) may limit the capacity of rivers to sustain fish. Instead, it is assumed that the
simplified structure of our food web model represents the most important processes of the stream
in enough detail so that it can be used to evaluate which factors are most limiting. This is a
critical assumption because the ATP model is simplified compared to the complex dynamics of
real food webs (see Bellmore et al. 2013). However, incorporating more complexity may not
make the model more predictive or useful (Ford 2010). Although important for furthering
ecological theory, complex food web models often produce results that are extremely difficult to
interpret, introduce numerous parameters of unknown value, and frequently exhibit behavior that

is chaotic or unstable; all of these things serve as justification for a more simplified approach.

Methods/Products. The ATP model produces estimates of capacity for a fish population or the

entire fish community. Given that the foundation of the ATP model is based on food web
interactions, the model can easily be adjusted to evaluate a variety of food web structures, such

as the presence of other fish competitors and/or predators. To date, the primary focus is on
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juvenile Chinook salmon. However, the model is capable of including other fishes to explore

how changes in the fish community influence carrying capacity (Bellmore et al. 2017).

The ATP model can be used to estimate fish capacity across a range of temporal and spatial
scales. Capacity estimates are produced on a daily time step, but these daily estimates can be
summarized at different temporal scales, such as seasonal or annual. The advantage of daily
estimates is that potential bottlenecks or temporal limitations to capacity can be identified, as
well as the associated underlying mechanisms responsible for the observed limitation. From a
spatial perspective, the model is currently being used to estimate capacity at the reach or segment
scale (100 meters to 10 kilometers). That said, the model could be run at any spatial scale.
However, given that habitat conditions are averaged within the model (i.e., the model is not
spatially explicit), it may not make ecological sense to model areas that are either much smaller
(e.g., channel units) or larger (e.g., entire tributaries). Current development on approaches for
scaling up model results to larger spatial domains (e.g., floodplain mosaics and entire
watersheds) is underway. This can be done by linking different modeled units together; whereby
different modeled reaches would interact with one another via downstream transport of organic
matter (periphyton, detritus, invertebrates), and the bi-direction movement of organisms (fishes).
This type of network scale view of food webs may result in emergent dynamics could greatly
contribute to our understanding (Polis et al. 2004) of how local restoration efforts interact to

influence capacity at the watershed scale.
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Figure 9. Conceptual representation of the Aquatic Trophic Productivity (ATP) model. The
backbone of the model contains four stocks; terrestrial detritus, periphyton, aquatic invertebrates,
and fish. Energy is transferred through each stock from the bottom-up, whereas top-down
control (i.e., consumption) is also present. For periphyton, energy is provided from solor input
(i.e., light) and nutrients. In situ energy is subsidized by terrestrial organic matter in the form of
leaf litter and terrestrial insects that fall in the stream, and marine derived nutrients from adult
salmon returning to spawn. For example, adults provide nutrients via excretion and carcass
decomposition, and fish and invertebrates can directly consume organic carbon from carcasses.
Ultimately, the food web dynamics and subsidies are mediated by physical, hydraulic, and
riparian conditions. Figure taken from Bellmore et al. 2017.

Incorporating Uncertainty, Method Validation, and Future Work. To incorporate uncertainty into

ATP model predictions, a global sensitivity analyses is used (Bellmore et al. 2014, Bellmore et
al. 2017), which takes into account the interactive effects of multiple uncertain variables. In
addition, we can add stochasticity to model runs by adding distributions (e.g., uniform, normal)
around model parameters and environmental conditions.

49



Results of the ATP model have been corroborated at a single site (Bellmore et al. 2017). Full
model validation will require correlating modeled fish biomass to empirical fish biomass across
several sites. To fully validate the model, biomass dynamics for periphyton, invertebrate, and
fish, as well as dietary proportions for invertebrates and fish would be needed. However, having
all of this data at any site is rare because it can be expensive to collect and process. Collection of
this extensive data is underway at six sites within the Methow River (J.R. Bellmore and J. R.
Benjamin unpublished data). That said, it is not expected the model will produce fish abundance
estimates that accurately predict observed fish biomass at a site. Instead, the goal of this
modeling effort is to be able to represent relative differences in fish abundance, either across
different sites, or at a single site, by comparing baseline conditions to those expected with
restoration. For example, the model could be used to ask questions such as: “which locations in a
watershed might have the greatest capacity to sustain fish production?”, or “which set of

management actions might lead to the greatest increase in carrying capacity?”’

Future directions include using the ATP model to estimate fish capacity across the
watershed, which will require a suite of movement rules for fish (Railsback et al. 1999). The
ATP model is being linked to a full Chinook salmon life cycle model in order to account for out
of basin effects on Chinook salmon, as well as to make better estimates of long term population
trajectories. In addition, the model is linked to a habitat suitability index (J.R. Bellmore and J.R.
Benjamin unpublished data) that accounts for the proportion of habitat that is unsuitable for
juvenile Chinook salmon. Lastly, multiple components of a salmon life cycle model are being
developed such as dam passage, ocean conditions and survival, climate change, habitat
relationships. In the future, it may be possible to link the ATP model, along with these different

components into a “global model” that can provide a more holistic view of salmon recovery.
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Table 1. Location, species and life stage where each capacity method is currently being applied,

or is proposed.

Method MPG ESU Sub-Basin (sub)watershed species life stage Chapter
Empirical (spawner- Upper Columbia Upper Columbia Entiat R Entiat R spring/summer Chnk  parr/smelt 2c
recruit) Wenatchee-Methow R.  Upper Columbia Wenatchee R Chiwawa R spring/summer Chnk  parr/smolt

Wenatchee-Methow R Upper Columbia MethowR MethowR spring/summer Chnk  parr/smolt
Wenatchee-Methow R Upper Columbia MethowR Twisp R spring/summer Chnk parr/smolt
John Day Middle Fork Middle Columbia  John Day R John Day Middle Fork spring/summer Chnk parr/smolt
John Day Upper Mainstem Middle Columbia  John Day . John Day Upper Mainstem spring/summer Chnk parr/smolt
Utnatilla-Walla Walla Middle Columbia Ummatilla R Utnatilla R. spring/summer Chnk parr/smolt
Lower Snake SnakeR.  Tucannon R Tucannon R spring/summer Chnk parr/smolt
Grande Ronde-Imnaha Snake R Grande Ronde Catherine Creek spring/summer Chnk parr/smolt
Grande Ronde-Imnaha Snake R Grande Ronde Lostine R spring/summer Chnk parr/smolt
Grande Ronde-Imnaha Snake R Grande Ronde Upper Grande Ronde R spring/summer Chnk parr/smolt
Grande Ronde-Imnaha Snake R Imnaha R Imnzha R spring/summer Chnk parr/smolt
Dry Clearwater Snake R ClearwaterR. Red R spring/summer Chnk parr/smolt
Wet Clearwater Snake R ClearwaterR. Crooked Fork Creek spring/summer Chnk parr/smolt
Middle Fork Salmon R Snake R Salmon R Marsh Creek spring/summer Chnk parr/smolt
South Fork Salmon R Snake R Salmon R East Fork Salmon R spring/summer Chnk parr/smolt
South Fork Salmon R Snake R Salmon R Secesh R spring/summer Chnk parr/smolt
South Fork Salmon R Snake R Salmon R South Fork Salmon R spring/summer Chnk parr/smolt
Upper Salmon R Snake R LemhiR_ Havden Creek spring/summer Chnk  parr/smolt
Upper Salmon R Snake R LemhiR_ Upper Lemhi R. spring/summer Chnk  parr/smolt
Upper Salmon B Snake B Salmon R Pahsimeroi B spring/summer Chnk  parr/smolt
Upper Salmon B Snake B Salmon R Upper Salmon B spring/summer Chnk  parr/smolt
Habitat expansion CEB-wide spring/summer Chnk parr b
Quantile Random CEB-wide spring/summer Chnk parr NA
Forests
Structural Equation Grande Ronde-Imnaha SnakeR. Grande Ronde Catherine Creek spring Chnk parr NA
Models Grande Ronde-Imnaha SnakeR. GrandeRonde  Upper Grande Ronde R spring Chnk. parr NA
HSI John Day R Middle Columhia ~ John Day R MF John Day R spring/summer Chnk. sthd. adult 9d
Upper Columbia Upper Columbia Entiat R Entiat R spring/summer Chnk_ sthd. adult 9d
Wenatchee-Methow R, Upper Columbia Wenatchee R all subwatersheds spring/summer Chnk_ sthd. adult 9d
Wenatchee-Methow B Upper Columbia MethowR_ nultiple spring/summer Chnk. sthd. adult ad
South Fork Salmon R Snake R Salmon R Secesh R spring/summer Chnk. sthd. adult 9d
Upper Salmon R Snake R Yankee Fork R Yankee Fork R spring/summer Chnk_ sthd. adult 9d
Upper Salmon R Snake R LemhiR. muliple spring/summer Chnk. sthd. adult 9d
Grande Ronde-Imnaha SnakeR. Grande Ronde Lower Grande Ronde R spring/summer Chnk_ sthd. adult 9d
Grande Ronde-Imnzha Snake R Grande Ronde Upper Grande Ronde R spring/summer Chnk, sthd. adult ad
Grande Ronde-Innzha Snake R Grande Ronde Catherine Creek spring/summer Chnk. sthd. adult ad
Grande Ronde-Imnzha Snake B MinamPB_ MinamPR.  spring/summer Chnk. sthd. adult 9d
Lower Snake Snake R Asotm R Asotin R spring/summer Chnk_ sthd. adult ad
Lower Snake SnakeR.  Tucannon R Tucannon R spring/summer Chnk. sthd. adult od
NREI MF John Day R SF John spring/summer Chnk. sthd.
John Day B. Middle Columbia  John Day R Day R_limted lower and parr o9d
uppermainstem John Day
Upper Columbia Upper Columbia Entiat R Entiat R spring/summer Chnk. sthd. parr od
Wenatchee-Methow B Upper Columbia Wenatchee B all subwatersheds spring/summer Chnk. sthd. parr od
Wenatchee-Methow B, Upper Columbia MethowR_ all subwatersheds spring/summer Chnk. sthd. parr ad
South Fork Salmon R Snake R Salmon R Secesh R spring/summer Chnlk_ sthd. parr o9d
Upper Salmon B Snake R Yankee Fork R Yankee Fork R spring/summer Chnk_ sthd. parr o9d
Upper Salmon R Snake R LemhiR mltiple subwatersheds spring/summer Chnk_ sthd. parr ad
Grande Ronde-Inmnzha Snake R Grande Ronde Lower Grande Ronde R spring/summer Chnk_ sthd. parr o9d
Grande Ronde-Imnaha Snake R Grande Ronde Upper Grande Ronde R spring/summer Chnk ., sthd. parr 9d
Grande Ronde-Tnnasha Snake R Grande Ronde Catherine Creek spring/summer Chnk, sthd. parr od
Grande Ronde-Imnaha Snake R MinamPF_ MinamR.  spring/summer Chnk. sthd. parr 9d
Lower Snake Snake R Asotin R Asotin R spring/summer Chnk. sthd. parr 9d
Lower Snake Snake R, Tucannon R Tucannon R spring/summer Chnk, sthd. parr ad
Dynatic food web Wenatchee-Methow R. Upper Columbia MethowR. MethowR Chnk NA
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Table 2. Comparison of data needs and resolution of capacity approaches.

Approach

Local parameters

Borrowed parameters

Spatial grain

Spatial and temporal
extent

Output metric

References

Stock-recruit

Estimates of independent

(stock, e.g. Spawners, redds,
females, eggs) and dependent
(recruits, e.g. fry, parr, smolts,

adult offspring) abundances

None

None

Area encompassed in
surveys of spawners and
recruits. Annual time-step

Abundance

Liermann et al. 2010,
Schnute and Kronlund
2002, Walters et al. 2013,
Neuswanger et al. 2015.

Habitat expansions

Maximum fish densities, area of Maximum fish density

habitat units. Dynamic

parameters (e.g., flow) can be
used if habitats are defined by

these parameters.

estimates are often
borrowed across
systems.

Habitat unit (e.g. pools)
Density estimates are
usually estimated at the
scale of habitat units (e.g.,
pools). Relevant temporal
scale is normally life-stage

extent is limited only by
the availbility of habitat
units. Estimates vary by
life stage rather than time,

Capacity is normally

estimated as
abundance, but
biomass could be
estimated based on
individual biomass

Beechie et al. 2006,
Hendrix et al. 2014

specific (e.g., fry, summer estimates.
parr).
Quantile Fish densities (e.g. fish/m), None 200-500 m stream Spatial extent is limited Fish density or Haire et al. 2000, Dunham
regression/random  landscape characters (e.g. D50, reaches. Limited by the  only by the availbility of  abundance et al. 2002, Cade and
forests elevation, CV of thalweg, grain of landscape landscape characters. Noon 2003, Eastwood et
LWD, pool frequency, etc.) estimates. Estimates vary by the life al. 2003, Sweka and
stage at which density Mackey 2010
data are collected rather
than time.
Structural equation  Fish densities (e.g., fish/m, None Spatial scale: 120-600 m  Extent is limited only by ~ Density (e.g. Mossop and Bradford

modeling (SEM)

fish/m?, etc.) and habitat
metrics (e.g. substrate D50,
elevation, CV of thalweg

profile, LWD, pool frequency,

etc.)

reaches of stream

the availbility of landscape fish/m2), could be
characters. Estimates vary translated to

by the life stage at which
density data are collected
rather than time.

abundance

2006, McCullough et al.
2015

Habitat suitability
index (HSI)

Fish density by habitat attribute
and estimates or measurements
of attributes that limit habitat

use (e.g. depth, velocity,
substrate)

Habitat suitability
curves may be
borrowed or locally
derived

limited only by resolution
of habitat measurments or
models to estimate
attributes

Limited by the spatial
coverage of habitat
attribute models or
measurements. Can track
varying stream conditions
at the temporal scale of
hydraulic models.

Abundance at the
estimated conditions

Keeley and Slaney 1996,
Aylién et al. 2012

Net rate of energy
intake (NREI)

habitat attribute and estimates
or measurements of attributes
that limit habitat use (e.g. depth,

velocity, substrate) and

estimates of food availability.

Bioenergetics
parameters for focal
species

limited only by resolution
of habitat measurments or
models to estimate
attributes

Limited by the spatial
coverage of habitat
attribute models or
measurements. Can track
varying stream conditions
at the temporal scale of
hydraulic models and drift
estimates.

Abundance at the
estimated conditions

Hughes and Dill 1990,
Hayes et al. 2007, Wall et
al. 2016

Dynamic food web

Discharge (m3/s), Water
temperature, Particle size

distribution, % stream shaded
and total solar input (PAR to
stream), % vegetation cover —
allochthonous inputs (leaf litter
and invertebrates), 1d hydraulic

model, Salmon spawner
abundance, Water turbidity,

Nutrient concentrations (DIN

and SRP)

Bioenergetics
parameters for
biomass stocks (e.g.
consumption and
respiration rates)

Scale irrelevant

Estimates are made at the Biomass in ash-free-

scale of the data. Temoral dry-mass

extent is limited by the
temporal update scheudle
of the inputs

DeAngelis et al. 1975;
Mclntire and Colby
1978; Power et al. 1995;
Power and Dietrich 2002;
Bellmore et al. in review
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Discussion

In this review of capacity estimation tools, the simplest approach is the process based habitat
expansion where the grain and extent of the estimates are set by the availability of habitat or
landscape characteristics, as fish densities need not be locally derived and may serve primarily as
an index of benefit for a given life stage. Habitat expansion also benefits from versatility in
creating restoration scenarios (e.g. restoring hydromodified bank to natural bank) (Beechie et al.
2015). A substantial drawback to the expansion approach is the difficulty of incorporating
environmental components that may have non-linear effects on the resulting population. For
example, determining how capacity might be affected by changes in temperature or flow would
be better suited to a mechanistic model where the functional response of fish or habitat is
formally incorporated. The largest benefit to the habitat expansion approach however, comes
from the widespread availability of stream networks and digital elevation models that can be
used to estimate landscape scale habitat estimates in the absence of higher resolution data (Hall
et al. 2007, Beechie et al. 2012, Beechie and Imaki 2014). As additional data become available,
estimation of capacity can be populated with more locally derived data through habitat
expansion, QRF, or SEM. QRF has the added advantage of potentially making capacity estimates
directly from the landscape attributes (e.g. slope, sinuosity, valley confinement) associated with
measured fish abundances, rather than using those variables to estimate habitat type as an
intermediate step. However, QRF requires extensive fish data over a range of conditions and
abundances as only a percentile of the data are fitted in the model. QRF and SEM also require
that some measurements are made at or near capacity, which may be unlikely. Extrapolation of
SEM and QRF to areas outside of those measured may also be difficult if novel conditions are

encountered. Empirical or process based approaches assume that fish densities are transferrable
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to unmeasured areas. This may not always be so (e.g. the Pahsimeroi R. tends to be very
productive compared to other nearby watersheds, but geomorphology would not indicate this, see
Thorson et al. 2014), and would be better dealt with in a mechanistic model where difference in
primary productivity or invertebrate production would be accounted for explicitly. Mechanistic
models therefore, may give more realistic results and are more flexible with respect to scenarios
that involve interactions with other species, or temporal changes to the system that are not
encompassed in landscape characters (e.g. temperature, light availability, flow, species
interactions). The drawbacks to mechanistic models are the high resolution data required to
populate them. In addition, mechanistic models are difficult to extrapolate to larger stream
networks where hydraulic models are not available. Dynamic food webs ultimately provide the
most flexibility and can be incorporated into other modeling exercises, but require extensive data

collection (e.g. light, nutrient nutrients, species interactions) that may not be feasible in all areas.

One criticism of capacity models in general, is that they tend to focus on production
while streams are not fish factories, but natural systems which vary in habitat and environment.
In this sense, S-R models may produce a more realistic look at how many fish may be expected
of a system by integrating the seasonal variation of a stream into a single output. Therefore,
where data are available S-R models may be useful tools for estimating contemporary
management targets, but they do suffer from limitations in interpretability and context. In a life-
cycle model context, we are interested in producing not only contemporary estimates of capacity,
but an understanding of how capacity has changed or is likely to change from different
management scenarios, an area where S-R models are generally insufficient. In addition, S-R
models may underestimate capacity. In part, this comes from fitting models to often noisy

perennial data. We can always find support for one S-R model over another, but we must be sure
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to fully explore the potential for density independence in systems with extremely depressed
abundances. When evaluating S-R models, we often find support for paradoxical density
dependence in freshwater life stages at historically low population abundances. This may be
interpreted as a sign of freshwater habitat limitation. While in many areas floodplain
disconnection and channel simplification may have greatly reduced the rearing capacity of the
habitat, caution should be exercised in light of the spawning and rearing behavior of salmonids.
Salmon often exhibit strong philopatry, which can lead to high local spawning densities, while
other areas remain unoccupied (Atlas et al. 2015). This phenomenon is particularly prominent as
a legacy of hatchery release practices, and may result in density dependent effects despite low
reach or watershed scale abundances. Fortunately, both habitat degradation and behavior can be
accounted for with the alternative modeling approaches we have outlined here. Thus, the value in
capacity estimates comes not from the absolute abundance estimate (although abundance may be
required for life-cycle models), but when outputs are treated as an index that is flexible to the
scenarios of a changing environment and landscape. Therefore, maximum occupancy capacity in
isolation may seem unrealistic as it assumes full seeding of the preceding life stage (e.g. eggs to
fry), which may never be achieved. But, assuming full seeding allows for a direct comparison of
capacity to evaluations of alternative restoration where the percent change in capacity is likely
more important than the value of abundance. In this context capacity modeling has great value

outside of life cycle modeling exercises.

Capacity is not static, even though our estimates of it may be. The capacity of a system will
fluctuate as rapidly as the changes in conditions that drive the limiting factor. However, from a
management perspective we generally choose discrete reference points to make comparisons

among scenarios or systems. A key question then is whether we are estimating capacity at the
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life stage that is limiting the population. The pitfall of evaluating capacity in isolation is why
capacity is being incorporated into life cycle models, often with several capacities at different
life stages. In this way, alternative restoration scenarios can be incorporated into life cycle

models to estimate the demographic response of such actions.

Choosing an approach to estimate capacity is dependent upon data availability and the output
needs (Table 3). For example, S-R models are appropriate for estimating contemporary capacity
when extensive S-R data are available, but are not informative to estimate restoration scenarios.
Similarly, habitat expansion models may be effective for evaluating the effects of large scale
restoration actions (e.g. watershed-scale reconnection of floodplain habitats), but are less
appropriate for evaluating alternative flow regimes, riparian plantings, or small-scale wood
installations. For those actions, SEM’s or mechanistic models may be more informative if the
data to parameterize them are available at the scale needed. Nearly all models described above
can be used to make direct estimates of metrics at unmeasured reaches within watersheds, or into
watersheds for which no data exist. However, caution must be exercised, especially when
extrapolating models into un-sampled watersheds, as we must assume that the empirical
relationships observed are constant within and external to measured reaches which may not be
true in many cases. The more our empirical relationships describe spatially constant underlying
physical laws, the less risk there is in this assumption. However, cross validation and residual
analysis has suggested many of the empirical models do an excellent job of describing
populations at the watershed spatial level; thus extrapolating watershed level distribution
estimates into un-sampled watersheds may indeed be useful and appropriate in many cases.
Another approach that has been shown to greatly increase the predictive ability of site level

monitoring and extrapolate this to areas of the watershed not sample are statistical approaches
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that include spatial autocorrelation, which simply suggests that sites closer to each other tend to
be more similar to each other, and that the degree of similarity as a function of distance can then
be used to extrapolate across areas not sampled to improve predictions. These approaches have
also incorporated simple rules of a watershed network, such as water can only move downhill or
that sites on the same tributary might be more similar to each other than sites an equal distance

apart but on a different tributary. For example, Isaak et al. (2010) compiled stream temperature
data from a variety of monitoring programs to make spatially continuous temperature estimates

throughout a watershed. By including a degree of similarity based on the distance between sites
and where they are located in the watershed, they greatly improve the prediction of temperature

throughout the watershed.

Table 3. Qualitative comparison of the data needs and scale of outputs for freshwater capacity
estimation techniques.

Approach Habitat data Fish data Scalability ~ Resolution
requirements requirements
Stock-recruit None or low Temporally Low None
extensive
Habitat expansion  Variable None to low High Scale of
habitat data

Quantile High High Intermediate  Scale of
regression/random habitat data
forests
Structural High High Intermediate Scale of
equation habitat data
modeling (SEM)
Habitat suitability High None to low  High High
index (HSI)
Net rate of energy  High None to low Low High
intake (NREI)
Dynamic food High None to low  Low None
web
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CHAPTER 2: HABITAT

2.b A habitat expansion approach to estimating parr rearing capacity of spring and

summer Chinook in the Columbia River Basin

Morgan H. Bond (Ocean Associates, contracted to NOAA Fisheries, NWFSC, Seattle), Tyler G.
Nodine (Ocean Associates, contracted to NOAA Fisheries, NWFSC, Seattle), Tim J. Beechie (NOAA
Fisheries, NWFSC, Seattle), Rich Zabel (NOAA Fisheries, NWFSC, Seattle)

Introduction

Ecologists and fisheries resource managers have long recognized the value of diverse freshwater
habitats for successive life stages of salmonids (Kiffney et al. 2006, Bisson et al. 2009). Not only
are there ontogenetic shifts in habitat preference, but the relative value of those habitats changes
with an individual’s size, age and physiological state (Bisson et al. 1988, Rosenfeld and Boss
2001). Studies have begun to demonstrate the demographic benefits of increased stream
complexity for juvenile salmonids with extensive stream rearing (e.g. coho salmon;
Oncorhynchus kisutch, Chinook salmon; O. tshawytscha) (Morley et al. 2005, Rosenfeld et al.
2008, Bellmore et al. 2013), but evaluations of the potential benefits from large-scale restoration

of freshwater habitats remain elusive (Wissmar and Bisson 2003).

Although stream complexity can take many forms, from small scales (e.g. streambed
rugosity, large woody debris) to large (e.g. island braided channel networks), the complexity
formed by the hydrology and geomorphology of the system will determine the large scale
channel heterogeneity on which other attributes may further filter the rearing potential of a
stream (e.g. primary productivity, predation, competition, etc.) (Beechie et al. 2006). Therefore,
to determine the value of streams for rearing salmonids we can begin by estimating the
propensity of streams to form anastomosing or braided channel networks from the hydrology and
geomorphology of the system. For example, a highly confined channel with high slope may
provide little refuge or foraging value for juvenile salmonids, while an equivalent length of

island-braided channel may contain a relatively large area of rearing habitat (e.g. edge, pool).

Beechie and Imaki (2014) successfully modeled the presence (82% accuracy for
qualitatively unmodified areas) of four different channel patterns: straight, meandering, island-

braided, and braided (confined channels were assumed from confinement ratios and not modeled
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explicitly) for all Columbia River Basin (CRB) streams greater than 8 m bankfull width. Streams
smaller than 8 m bankfull width are not expected to maintain multithread channels, and were
excluded from their modeling (Hall et al. 2007). Beechie and Imaki (2014) provided evidence
that the type of habitat available to fishes could be estimated from large-scale landscape data
available throughout the CRB.

Although the estimation of channel forms in Beechie and Imaki (2014) validated the
efficacy of predicting habitat types at large spatial scale and fine grain, to estimate the total
habitat area and type available for salmonids a more detailed approach is required. The Beechie
and Imaki approach was effective at predicting channel types in areas deemed to be largely free
of anthropogenic disturbance that would restrict the channel to form side channels, primarily
through confinement of the floodplain. However, throughout the CRB extensive development
has modified the active channel widths, primarily through urban, agricultural, and road
development (Figure 1). Therefore, to predict current side channel habitat and historical side

channel potential, estimates of the current and historical floodplain width are needed.
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Figure 1. Average percentage width change from historical to a contemporary floodplain by sub-
basin. Historical floodplain estimated by filling valley bottom to 6 m above lowest point in the
digital elevation model. Contemporary floodplains are estimated by limiting the floodplain width
to currently unmodified areas only, assuming anthropogenic development (crop land, range land,
urban, roads) restricts the active channel and floodplain processes.

To make effective management recommendations about the relative benefit of various
restoration scenarios that will affect stream habitats, each habitat type must be weighted
appropriately for their value to the life stage of interest. Traditionally habitats are weighted by
their capacity, or the maximum density of individuals that can be expected to reside in the habitat
at that life stage. Therefore, habitats that support a disproportionate number of fish relative to
their area are given a higher value than those rarely used. This forms the mechanism for
identifying nursery habitats (Beck et al. 2001), and has been used in a number of studies to
evaluate the restoration potential of salmonid habitats (Bartz et al. 2006, Beechie et al. 2012).

The advantage of this approach, in addition to evaluating restoration scenarios, is the ability



estimate the capacity for a life stage at different spatial scales by summing the individual

capacities of each habitat component.

Recently, a large suite of machine learning tools have been developed to create powerful
prediction models. Machine learning approaches (e.g. support vector machines, random forests,
neural networks) are increasingly popular for prediction in ecological arenas because of their
accuracy and ability to function with large datasets including nonlinearities and correlated
variables (Olden et al. 2008). Random forests are one such ensemble classification or regression
algorithm that is resistant to overfitting and deals well with unbalanced datasets by creating a
suite of regression or classification tress, each with a random subset of predictors and data
(Cutler et al. 2012). Here, we employ random forest models to predict habitat area for each 200
m stream segment throughout the CRB by including the variables included in the original
Beechie and Imaki (2014) dataset as well as estimates of contemporary floodplain width, and
historical and contemporary land cover/use. To estimate Chinook parr rearing capacity from
estimates of habitat area three approaches of applying fish densities for each habitat at capacity
were employed: 1. habitat specific densities of parr capacity from literature review, 2. Quantile
random forest of observed parr densities and landscape characteristics from CRB rivers, 3.
Capacity esitmates of Chinook parr from previous studies of mid-summer snorkel surveys in the
Salmon River (Thorson et al. 2014).

Objectives

1. Estimate mainstem habitat area throughout the CRB.

2. Estimate contemporary and historical side channel area throughout the CRB.

3. Estimate the effects of floodplain reconnection scenarios (restore range land, crop land,
and small roads) on side channel habitat.

4. Estimate current rearing capacity and the effects of restoration scenarios on rearing

capacity for spring Chinook parr in currently accessible areas of the CRB.
Methods
Methods Overview

To estimate the parr rearing capacity of CRB tributaries we followed a habitat based approach

employed in other watersheds in which geomorphic characteristics are used to make predictions

4



of stream habitat area and condition (Bartz et al. 2006, Beechie et al. 2012). At its core, this
approach uses attributes of geomorphology, geology, hydrology, and land use to estimate the
discharge, gradient, sediment accumulation, sinuosity, and confinement of a stream, which are
key drivers in determining channel planform (e.g. island-braided, meandering, etc.) and a

stream’s potential for providing quality fish habitat (Beechie et al. 2014).

We used these drivers and an associated geospatial stream network to estimate the areas
of discrete habitat units meaningful for juvenile rearing within CRB tributaries. Subreach scale
habitat units were selected based on available habitat specific fish densities and their ability to be
accurately estimated at this spatial scale (Beechie et al. 2005). Within small streams (< 8 m wide)
we estimated pool and riffle areas and for large streams (> 8 m wide) we estimated mainstem
bank, bar and mid-channel areas as well as additional habitat area provided by side channels
(Figure 2.). Due to the importance of side channels in providing high quality rearing habitat and
their vulnerability to floodplain modification, we made additional estimates of side channel
habitat area under historical conditions and two restoration scenarios that improve floodplain
connectivity. After habitat unit areas were estimated, we identified reaches within our stream
network accessible to spring run Chinook salmon and applied fish densities to each distinct
habitat unit, which were then summed to make reach scale rearing capacities. We also leveraged
our habitat predictions to make two alternate contemporary capacity estimates that utilize
independent fish density data sources.
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Figure 2. Flow chart of modeling process. Grey boxes indicate random forest models and dotted
boxes indicate steps where we applied estimates to make decisions in branch direction or used
established relationships to achieve outputs. All model outputs are in boxes with solid black
lines.

Methods Part 1: Habitat Estimates
CRB stream network

For this analysis we used a stream network spanning the CRB and associated reach
characteristics developed by Beechie and Imaki 2014. This stream layer consists of two merged
hydrography datasets; the National Hydrography Dataset Plus (NHDplus, mapped at 1:100,000
scale) for U.S. streams and The Watershed Atlas (mapped at 1:50,000 scale) for Canadian

streams. The stream network is broken into 200 m segments and reach attributes (habitat unit



drivers) were calculated at this scale. Fish distribution data from the (StreamNet Project 2012)
was joined to the stream layer and reaches were designated as being accessible or inaccessible to
spring Chinook and whether they were utilized for rearing, migration or both. We split our
stream network into reaches smaller than 8 m bankfull width (small streams) and streams larger
than 8 m bankfull width (large streams) and used separate processes to estimate capacity for

these two groups.
Small stream habitat

For streams smaller than 8 m bankfull width (BFW) we assume that all channels will be single
thread as streams bellow this threshold are not expected to have sufficient discharge and
sediment supply to maintain side channels (Hall et al. 2007)(Figure 3). In these small streams we
account for heterogeneity in habitat value by estimating a pool to riffle ratio for each 200 m
stream segment determined by slope (Beechie et al. 2001). This ratio is applied to the total
channel area, the product of hydrography network derived reach lengths and estimated BFW, to

calculate pool and riffle habitat unit areas.
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Figure 3. Proportion of sites that have any side channel habitat by the nearest integer bankfull
width value. Red line is a loess smoother indicating the general increase in side channel with
bankfull width. Dashed vertical line indicates the cutoff (8 m) used to separate sites included in
the side channel model (> 8 m) and those assumed to be single thread channels (< 8 m).



Large stream habitat

For streams wider than 8 m BFW we developed a multi-step modeling process to capture habitat
complexities provided by large and potentially multithreaded channel forms. To estimate
mainstem habitat composition we first modeled mainstem wetted width and then broke it down
into bank, bar, and mid-channel habitat units. Because many CRB streams display multithreaded
morphologies where side channels contribute a large portion of high quality rearing habitat,
estimates of side channel area were also necessary. To inform these habitat models we
established a random spatially balanced sample population of stream reaches within the CRB and
determined an appropriate approach for measuring habitat characteristics at sample reaches.
After completing the sample measurements, we selected and developed predictor variables used

to make habitat estimates across the basin.
I. Sample design

The study area used in the construction of our mainstem wetted width and side channel models
included all rivers and streams over 8 m wide in the Columbia River Basin, which is comprised
of 243,544 stream segments. Rather than restricting our study area to currently accessible
streams, we included all reaches in the basin to encompass a wider range of potential stream
conditions and channel morphologies. Although side channels are common in island-braided
reaches many of the streams in the basin do not possess geomorphic characteristics necessary for
multithreaded channel formation. As a result, our sampling size had to be large enough to
capture an adequate number of sites where side channels were detected.

We used a Generalized Random Tessellation Stratified approach (GRTS, Kincaid 2016)
to draw a spatially balanced sample of reaches throughout the Columbia River basin. We
stratified our sample by land cover, channel type, and stream width resulting in 75 unique strata.
Dominant land cover was assigned to each reach in our study area using a 250 m resolution
continuous land cover dataset for North America (Commission for Environmental Cooperation,
Land Cover 2010, Figure 4). We aggregated the dataset’s land cover types into five classes
(urban, cropland, grassland, shrubland, and forest) and calculated the dominant land cover class
(class with highest frequency) that occurred in a 100 m radius of the midpoint of each stream
segment. Using channel patterns predicted by Beechie and Imaki (2014) we also stratified by the

following channel types: straight, meandering, island-braided, braided, and confined. Last, to
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ensure balanced representation of stream sizes in our sample we used estimated bank-full width
to stratify by small (bfw < 20 m), medium (bfw 20-50 m) and large (bfw >50 m) streams (Table
1). We sampled 50 sites from all island-braided strata, where we expected to find the most side
channel habitat, and for all other strata we sampled 25 sites or as many sites as were available for

rare combinations, totaling a sample size of 2,093 reaches (Figure 5).

Table 1. Parameters governing the stratification of sites randomly chosen for satellite image
analysis of channel habitat characteristics.

Sample Strata
urban
cropland
Land cover grassland
shrubland
forest
straight
meandering
Channel type island-braided
braided
confined
small< 20 m
Stream width medium 20-50 m
large > 50 m

10
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Figure 4. Contemporary land cover classes used in stratifying sample points throughout the CRB
(Data from Commission for Environmental Cooperation, Land Cover 2010)
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Figure 5. Sites randomly chosen with a stratified GRTS sample design. At each site satellite
imagery was used to measure for stream size and side channel habitats.
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1. Selection of transect measurement method

To construct a predictive model of habitat area we sought to measure main stem, off channel and
side channel habitat at each of the 2093 selected stream segments. However, the time involved
to fully digitize the area of all habitats within a reach would necessitate either a reduction in
selected sites or the number of measurements per site. As an alternative to full digitization we
sought to leverage the strong spatial autocorrelation in stream channels (i.e. The habitat of each
length of stream is highly correlated with the adjacent length) by subsampling. To test this
approach, we made 20 evenly spaced transects across 435 fully digitized (main channel, side
channel, off channel) 200 m stream segments at 85 sites (1-22 segments per site) throughout the
CRB (Figure 6). Transects were made perpendicular to the valley axis, and the widths of each
habitat polygon where it intersected a transect were retained (Figure 5). We then varied the
number of evenly spaced transects (1, 3, 5, 10, 20) to estimate how many transects per 200 m
segment are required to detect the presence of side and off channel habitats. In addition, for each
number of transects, we estimated the total side channel and off channel habitat in each stream

segment with varying transect number, comparing estimates to actual habitat from digitized
polygons.
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Figure 6. Example site with polygons of each habitat type (main channel; dark blue, side
channel; light blue, off channel; blue-green) digitized manually from satellite imagery. Heavy
lines indicate 200 m segment breaks, while green lines indicate individual transects. Widths
where transects cross habitat polygons were retained to determine the minimum number of
transects required to characterize the habitat at each site.

We used two metrics to choose the number of transects required per stream segment based on a
two-stage “hurdle model” approach to predicting off and side channel habitat. Because off and
side channel habitats are relatively rare, we predict their presence first. The amount of habitat is
then predicted separately for sites with side channels. Therefore we evaluated the detection of
side channel and off channel habitat with varying transect number by comparing the side or off
channel to main stem area ratio for all sites with a ratio greater than zero to the proportion of
sites where side channel was detected (Figure 7). We found a dramatic increase in detection for
both side and off channel habitats from one to three transects, with diminishing returns thereafter
(Figure 7). For segments with low side to main stem ratios of 0.1, adding two transects to the
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single center transect increased the detection rate from 0.44 to 0.90. Similarly, off channel
detection improved from 0.47 to 0.85. Adding additional transects beyond three only showed
marked improvement at side or off to main stem ratios very close to zero. Likewise, we observed
similar increases in the accuracy of extrapolating the total side and off channel area for 200 m
segments from varying numbers of transects (Figure 8). We subtracted the estimated area from
the actual area to demonstrate decrease in the number of extreme estimates with increasing
number of transects. However, even a single transect provides an unbiased estimate with a mean
difference of near zero. These metrics, combined with the additional time required to measure
each additional transect, led us to measure three transects for each of the 2093 sites to build our

predictive models.
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habitat was detected at 200 m stream segments with varying number of evenly spaced transects
per segment. Side and off channel to main stem area ratios (side:main and off:main) exceeding 1
had a detection proportion of 1 for all numbers of transects.
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I11. Measurement of response variables

We measured our habitat response variables using the highest quality aerial imagery
available from Google and Bing. We used an imagery integration extension (Arc2Earth) to view
this imagery in ArcMap 10.3 and digitize habitat characteristics. Satellite images used were
primarily taken during summer months between June and August. Although flow conditions, and
thus wetted area may vary among images, the relationship between main channel and side
channel wetted area should be well maintained over the range of stream sizes and conditions
evaluated. Few images during winter or fall flows were likely encountered, as satellite imagery
requires clear sky conditions generally encountered in summer or early fall months in the Pacific
Northwest. In addition, images with snowfall obscuring habitats were not used and alternative

sites were selected from our random draw of sites.

At each sample site we measured wetted habitat features along three transects.
Measurement transects were drawn perpendicular to valley axis with 100 m spacing. Our

validation exercises showed that measuring habitat features at three transects at this spacing
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adequately characterized a 200 m reach. Transects spanned the width of the valley floor and
wherever wetted habitat was crossed the width of the feature would be digitized and stored in a

geodatabase with a common reach identifier.

Our primary response variables measured were side channel width and mainstem wetted
width, but other habitat features were also digitized including bankfull width, braids, off-
channels (sloughs and backwaters), and ditches as well as historic and contemporary floodplain
widths. For our purposes we defined a side channel as an unmodified or minimally modified
channel connected to the mainstem on two sides and separated from the mainstem by a vegetated
island. This also included side channels that were disconnected from the main channel on one
end due to flow levels when the imagery was taken. If the side channel was heavily altered or
degraded from its natural state and not considered to be suitable salmonid habitat it was
classified as a modified channel or ditch. Channels separated from the mainstem by an
unvegetated gravel bar were also classified separately as braids. See table 2 for definitions of all
our habitat metrics. All habitat feature widths were digitized along the measurement transect axis
except for bankfull width, which was measured perpendicular to the direction of flow. Aside
from the bankfull width metric which spanned the entire width of the main channel including
unvegetated bars and islands, only wetted habitats were measured; if a transect crossed a dry side
channel or slough the feature was not digitized. While side channel width and mainstem wetted
width were our only measured response variable for this task, the additional habitat metrics were
used to validate techniques employed to estimate predictor variables at all sites across the

Columbia Basin.

Table 2. Measured variables with descriptions and standardized orientation of measurement.
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Measured Habitat Metrics

Name Description Measurement Axis
Side chamnel Channel regularly connected to mainstem on both sides and perpendicular to valley axis
separated from the mamnstem by a vegetated island
Off channel Feature only connected to mamstem on one end with little or perpendicular to valley axis
now flow (slough, backwater)
Braid Channel regularly connected to mainstem on both sides and perpendicular to valley axis

separated from the mainstem by an unvegetated gravel bar

Modified side charmel  Highly modified or degraded side channel determined to be  perpendicular to valley axis
maccessable to fish or unsuitable for rearing

Ditch Atificial chammel determined to be inaccessable to fishor  perpendicular to valley axis
unsuitable for rearing

Wetted width Wetted width of main channel perpendicular to valley axis

Bankfull width Width of stream at bankfull flows perpendicular to stream flow

Historic floodplain Width of valley bottom defined by rise in elevation > 5m perpendicular to valley axis
above main channel elevation using DEM

Current floodplain Width of unmodified floodplain; same as historic floodplain perpendicular to valley axis

if no modification exists same as

IV. Predictor variables

We estimated side channel and mainstem habitat for each reach in our stream network larger
than 8 m BFW using geomorphic reach attributes calculated by Beechie and Imaki (2014) (Table
3) and additional metrics developed for this analysis. Variables developed by Beechie and Imaki
(2014) include bankfull width, slope, elevation, discharge and sediment supply; all key drivers of
channel pattern. Slopes and elevations were derived from a basin wide 10 m digital elevation
model (DEM) that was created by merging U.S. (NED) and Canadian (CDED) elevation
datasets. Bankfull width (BFW) and discharge were estimated based on DEM derived drainage
area and mean annual precipitation models (PRISM, ClimateBC). We used two sediment supply
surrogates that were derived from flow accumulation, fine sediment sources and relative slope.

For more detail on the calculation of these reach attributes see Beechie and Imaki (2014).

We also developed floodplain width attributes calculated by generating transects
perpendicular to the valley axis across the valley floor. We used valley floor polygons derived
from a detrended DEM filled to 6m above main channel elevation (Beechie and Imaki 2014). In
many streams however, floodplain width has effectively been reduced due to development and

land modification, which can lead to a loss of channel complexity and restrict a streams’ ability
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to migrate and form new multithreaded patterns. To make estimates of side channels as they
currently exist on the landscape we estimated a contemporary floodplain variable. Using a 30 m
resolution land cover datasets (Homer et al. 2015)(LU2010 Agriculture and Agri-Food Canada)
we mapped floodplain modification and used these modified zones to truncate the original
floodplain width assigned to each reach. We designated urban, agriculture, and rangeland classes

as modified land. Ecoregion was assigned to reaches using EPA level 111 ecoregion classes.

To make historic side channel habitat predictions we substituted our current floodplain and land
cover variables with estimated historic values. We calculated historic floodplain width from
DEM derived valley floor polygons described above and ignored contemporary land use. We
also estimated floodplain widths under two additional restoration scenarios where we assume
floodplain reconnection could occur in currently modified areas. In the first scenario, we
calculated floodplain width by removing rangeland and small road restrictions on the current
floodplain width. In the second scenario, we assumed reclamation of rangeland, small roads, and
cropland. We used these restored floodplain widths in our model runs to estimate side channel
habitat area that could be gained under the above scenarios.

Table 3. Predictor variables and data sources used to predict the presence of side and off channel
habitat throughout the CRB.

Predictor Variables Description Data Source
Bankfull width Stream channel width at bankfull flows estimated from drainage Beechie and Imaki 2014
area and mean annual precipitation upstream of each reach
Discharge 2 year flood discharge estimated from drainage area and mean
annual precipitation upstream of each reach
Flow accumulation Estimated from DEM derived drainage area. Flow accumulation
weighted by precipitation and fine sediment source also included
Slope Reach slope estimated from digital elevation and hydrography
models
Elevation Estimated from digital elevation and hydrography models
Sinuosity Shortest distance between reach endnodes divided by reach length
Hydrologic Regime Categorical variable indicating if reach belongs to a snow-melt
dominated, rain dominated or transitional drainage
Sediment supply Sediment supply surrogates estimated from flow accumulation, fine

sediment sources and relative slope
Historic floodplain width Valley bottom width estimated from DEM and hydrography models
Current floodplain width Width of currently unmodified floodplain estimated from DEM, Beechie and Imaki 2014; National Hydrography Dataset (NHD),

hydrography models and land use data https://nhd.usgs.gov/data.html; National Land Cover Database 2011
Restored floodplain width 1~ Width of floodplain assuming reclamation of rangeland and small ~ (NLCD 2011), http//www.mrlc.gov/nlcd2011.php; Agriculture and Agri-
roads Food Canada Land Use 2010,

Restored floodplain width 2~ Width of floodplain assuming reclamation of cropland, rangeland,  http://www.agr.gc.ca/eng/?id=1343066456961
and small roads
Ecoregion Level Il EPA Ecoregions EPA, https://www.epa.gov/eco-research/ecoregions
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V. Side Channel area model construction

Following measurement of satellite imagery for side and off channel area, side channels were
present in 35% of sites, while off channel habitats were found at 2% of sites. Low rates of the
presence of any side or off channel habitat indicated a hurdle model approach may be the most
effective at estimating their areas (Potts and Elith 2006). A hurdle model is used for count data
where separate processes may govern the presence and magnitude of the response, and where the
zeros cannot be effectively modeled with standard probability distributions (Martin et al. 2005).
Therefore, the presence/absence is modeled first, and sites where the presence of habitat is
predicted are placed into a second model to estimate the magnitude. Because our goal is to make
accurate predictions of habitat area from the available data, rather than evaluate the statistical
relationship of the factors governing or correlated with side channel habitat we elected to use
random forest prediction models instead of more traditional statistical approaches like
binomial/gamma hurdle models. Similar to classification and regression tree (CART) models,
random forest models are powerful prediction algorithms that do not suffer from some of the
limitations of more traditional statistical approaches. They adequately deal with very large
datasets and can include many correlated predictors and, unlike CART, are resistant to
overfitting by constructing thousands of shallow trees with a random subset of predictors, rather
than a single large tree. In addition, random forest models perform equally well for both
classification (presence or absence of habitat) and regression (habitat amount).

To construct predictive models we created a binary classification of side and off channel
habitats, 0 where no habitat was present, and 1 where any side channel was measured. Therefore,
the entire suite of 2093 sites were used to construct the classification model. We randomly
selected 80% of sites to be included in training the model, with the remaining 20% reserved for
testing model accuracy. To train the random forest model we included eight predictors: current
floodplain width, historical floodplain width, discharge, average elevation, sinuosity, hydrologic
regime and ecoregion (Figure 9). We constructed models with the randomForest and caret
packages in the R statistical software platform version 3.2.3 (R Development Core Team 2011).
During the training phase we used 10-fold cross-validation and tuned two parameters: the
number of trees constructed, and the number of variables randomly drawn to include at each tree

node. We used the kappa tuning metric, and evaluated the final model for balanced accuracy.
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Our final model included 2000 trees and two variables at each node. A second regression random
forest model was constructed with only the 874 sites that had side channels present, using the
same suite of predictors: discharge, accumulated flow, estimated bankfull width, estimated
bankfull depth, current floodplain width, sediment accumulation, and historical floodplain width
(Figure 10). We used the same training procedure employed in the classification model but tuned

the regression model by maximizing the receiver operating characteristic (ROC).

Once both models were sufficiently tuned, we used the classification model to predict the
presence of side channel habitat for all CRB stream segments. Those sites that received a 1
during classification were then used to predict side channel area for each stream segment. To
estimate historical side channel area or full floodplain restoration potential, we made new
predictions with both models where floodplain width was updated to historical values. Similarly,
we estimated side channel area under two restoration scenarios by using restored floodplain

widths described above.
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V1. Mainstem habitats

To estimate mainstem habitat area, we modeled mainstem wetted widths using a random forest
regression model with the same approach employed in side channel amount. The final tuned
model included predictors: current floodplain width, sediment accumulation, discharge, bankfull
width, bankfull depth, slope, sinuosity and elevation. Predicted wetted widths were then
multiplied by stream segment length to estimate total wetted habitat area. To account for
differences in juvenile salmonid capacity among mainstem stream habitats, we measured the
bank to bar ratio of both banks for 1-5 km of stream at 70 sites throughout the CRB. We then
used similar random forest procedures to the side channel model development to estimate the
bank to bar ratio for each 200 m stream segment. The random forest regression model included
slope, contemporary bankfull width, and sediment accumulation, and effectively predicted the
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bank to bar ratio for test sites (Fig 14). The bank to bar ratio was used to estimate the total stream
bank length occupied by banks or bars. However, to estimate usable bank and bar area we used
regressions of bar (Eq 1.) and bank (Eq 2.) width on total stream width developed from
measurements of the Chehalis River in Washington State (Tim Beechie, unpublished data).

Eq 1. Brw =0.0872 x BFW + 2.114
Eq 2. Bkw = 0.0837 x BFW + 0.328

Where Bry is the bar width, Bk is the bank width, and BFW is the stream segment bankfull
width. Estimated lengths and widths of banks and bars were then estimated for each stream
segment. Mainstem habitat area not encompassed by bank and bar area was considered to be
mid-channel area, which is not preferred habitat by salmon parr, and receives a unique density

during fish capacity estimation.

Methods Part 2: Fish Capacity Estimation

To estimate capacity of each stream segment, we apply the maximum density we expect to
observe in each habitat type. However, the data available for estimating the habitat capacity
varies widely for spring Chinook. Therefore, we took three different approaches to estimating
capacity form the available data;1) an expansion based on the finest level of habitat resolution
estimated by our modeling approaches and a literature review of habitat specific fish densities, 2)
a coarser expansion based on reach level habitat characteristics, total habitat area and a quantile
regression of observed fish densities in the CRB, and 3) capacity estimated from mid-summer

snorkel surveys in the Salmon River (Thorson et al. 2014).

The expansion approach applies expected fish capacity densities to each habitat area estimates
for each stream segment. An extensive review of published and unpublished habitat specific
capacities for both spring Chinook and steelhead young of the year (Beechie and Thompson,
unpublished data, Table 4). These data are derived primarily from repeated beach seining or
electrofishing specific habitat types over a range of conditions and spawner abundances, and the
average maximum observed density is applied to each habitat type. Here, we used estimates for

side channel, mainstem bank, mainstem bar, and mainstem mid-channel. Fish densities exist for
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finer levels of habitat distinction (e.g. mainstem backwaters, ponds, sloughs), than are currently

estimated in the habitat modeling.

Table 4. Densities of Chinook parr used to estimate capacity with habitat expansion approach
(From Beechie and Thompson unpublished review).

Habitat Chinook parr - hectare™
main stem bank 8884

main stem bar 4720

main stem mid-channel 100

side channel 6000

small stream pool 452

small stream riffle 4

The quantile regression approach is similar to the expansion approach; applying fish densities to
habitat area estimates. However, the fish density data available for this approach is density for
entire stream reaches and is not separated by habitat type. Therefore, a single abundance and
wetted area are used to calculate density. The Integrated Status and Effectiveness Monitoring
Program (ISEMP) has been electrofishing stream reaches previously sampled by the Columbia
River Habitat Monitoring Program (CHaMP) for several years. The ISEMP data have the
advantage of being measured over a range of spawner abundances. However, the observed fish
density at a given site may vary from zero to several fish per m? over the period of record.
Therefore, a mean or median density may not accurately reflect capacity at the site level. To
account for these differences we used quantile regression, which allows for the modeling of any
percentile of fish density (Cade and Noon 2003). However as a predictive, rather than
explanatory model, we chose to use quantile random forest procedures. We indexed the ISEMP
sample densities to the sites used in our habitat model construction and used the same suite of
habitat level predictors (i.e. we did not include ecoregion or land use) in creating a predictive
model of fish capacity for both spring Chinook and steelhead. Quantile random forest models
were created and tuned with the R package quantregForest using similar tuning procedures to the
habitat estimation. After tuning, we predicted the 90™ percentile fish density for each Willamette
project stream segment, and multiplied those densities by sum of mainstem and side channel
habitat for that reach.

Finally, we employed the spring Chinook capacity estimated from a hierarchical stock-recruit

model of spawner and mid-summer parr densities in the Salmon River (Thorson et al. 2014).
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Thorson et al. (2014) used decades of snorkel survey data to estimate an average capacity of
5200 parr - hectare™. To estimate capacity we multiplied the total habitat area (main stem bars,

main stem banks, side channel) in hectares by 5200.

For each of the three expansion methods we sought to prevent the inclusion of habitats that are
inaccessible, or unusable for rearing by spring or summer Chinook or steelhead. Therefore, the
upstream and downstream extent of the network was limited by the stream sections listed as

“spawning and rearing” or “migration and rearing” in the StreamNet spatial database (StreamNet

Project 2012).
Results
Habitat area prediction

We estimated mainstem habitats with two models. The wetted width model performed well, with
an R% = 0.82 (Figure 10). Similarly, bank to bar ratios were well estimated by the bank

proportion random forest regression model (R?= 0.68, Figure 11.)

The random forest side channel classification model predicting the presence of any side
channel had a balanced 74% accuracy, and there was little bias among false negative (23%) and
false positive (28%) classification of side channel. Floodplain width was an important predictor
in both side channel presence and side channel amount, although it was more influential in
presence (Figures 8 and 9). Increasing floodplain width increased the presence and amount of
side channel habitat, with the strongest effect at low width values (Figures 12 and 13). Both
presence and magnitude models experienced a saturation of floodplain width near 2000 m
(Figures 12 and 13). The side channel model contrasts starkly with the off channel model, which
had no false negative detections, but a false positive rate of 18%. Therefore, we did not make
predictions of off channel habitat, as it would likely drastically overestimate the amount of off
channel habitat. The side channel area regression model had an R? of 0.52, and was only weakly

biased low in its estimates of side channel area (Figure 14).
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Figure 10. A comparison of measured wetted width (x —axis) and predicted wetted width (y-axis)
from the random forest regression model for all sites measured with satellite imagery. Solid line
indicates 1:1 correspondence between measurements and model output.
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Figure 11. A comparison of measured bank proportions from satellite imagery (x-axis), and bank
proportions predicted with random forest regression model.
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Figure 12. Vote influence of floodplain width on predictions of the presence of side channel
habitat. Increasingly positive values of vote influence predict the presence of side channel habitat
more strongly. Similarly, decreasing vote influence values indicate a stronger prediction of no
side channel. Small ticks on the x-axis indicate deciles of floodplain width for all measured
reaches. Vertical dashed line at a floodplain value of 315 m indicates the floodplain width where
the marginal effect equals zero. Floodplains greater than 315 m are more likely to have side
channel habitat, while those less than 315 m are less likely to have side channels. In very large
floodplains (> ca. 2000 m) other processes dominate and the marginal effect returns to near zero.

29



34

32

28

Partial dependence

26

0 |
I T T I T T T
0 200 1000 1500 2000 2500 3000

Current floodplain width (m)
Figure 13. Partial dependence plot of the marginal effect of floodplain width on side channel
width prediction. The influence of floodplain width becomes saturated at ca. 2000 m floodplain

width. Small ticks on the x-axis indicate deciles of floodplain width for all measured stream
segments.
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Figure 14. A comparison of measured side channel area (x —axis) and predicted side channel area
(y-axis) from the random forest regression model for all side channel containing sites measured
with satellite imagery. Solid line indicates 1:1 correspondence between measurements and model
output.

Across all HUC-8 watersheds (US Geological Survey level 8 hydrologic unit) for spring
Chinook (Table 5) we estimate approximately 52,852 hectares of contemporary wetted rearing
habitat for spring and summer Chinook. For both Chinook run timings, contemporary side
channel habitat comprises 13% of the total wetted habitat area. However, contemporary side
channels comprise over 41% of the high value rearing habitat (i.e. side channels, mainstem banks
and bars). Overall, historical estimates of side channel habitat were 34% greater than

contemporary values, but varied widely by river, ranging from 0-435% change.
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Fish capacity estimates

The three methods of assigning fish densities produced different capacity estimates in some
HUC-8 watersheds, but similar estimates in others (Figure 15). Estimates of contemporary
Chinook parr capacity using the habitat expansion method varied substantially among
watersheds, and was 109.8 million across all watersheds (Table 5, Figure 16), with production
from mainstem and side channel habitats varying among streams. As a percentage of total reach
production, contemporary side channel habitat accounted for 37% of total capacity, although the
percentage varied widely among watersheds, from 0-59% (Table 5, Figure 17). The quantile
random forest method of assigning capacity to each stream segment predicted fewer fish in most
watersheds, but many more at a few sites (e.g., Clearwater, HUC 1706030). Across all HUC-8
watersheds, the quantile regression method estimates a higher Chinook parr capacity than habitat
expansion (120.9 million parr) (Table 5). Chinook parr capacity estimated from applying 5,200
fish per hectare to the total wetted area for each reach produced a lower total capacity than either

expansion or quantile random forests (85.8 million parr across all watersheds).

Historical estimates of spring Chinook parr capacity across the Columbia basin were 13% higher
than contemporary estimates (Table 5, Figure 18). To estimate potential changes in Chinook parr
capacity due to restoration, we used two scenarios of floodplain reconnection. First we increased
the current floodplain width to include rangelands (i.e., we estimate side channel areas as if all
rangelands were converted to natural landcover), which increased CRB-wide capacity by 7.6%
over the contemporary estimate (Figure 198). However, in some watersheds with large amounts
of rangeland on the floodplain, the restoration scenario produced parr capacity increases of 25%
or more. In the second scenario, restoring both rangeland and cropland areas produced only a
slightly larger increase in capacity (8.6% over contemporary estimates), and there were relatively

few additional watersheds with increases of 25% or more (Figure 20).
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Figure 15. The coefficient of variation for spring/summer Chinook parr capacity estimates at

HUC-10 watershed boundary spatial scale. Estimates were made with habitat expansion, quantile

random forests, and applying 5200 parr per hectare of estimated Chinook rearing area.
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Figure 16. Contemporary summer parr rearing capacity of Spring Chinook within the domain
currently accessible to anadromous fishes as determined by the habitat expansion approach of
estimating main stem and side channel habitat and assigning fish densities to each habitat at the
200 m stream segment scale. For graphical purposes, estimates are aggregated at the HUC-10
watershed boundary spatial scale.
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Figure 17. Contemporary percentage of total estimated spring Chinook parr rearing capacity
attributed to side channel habitat. Estimates were made with the habitat expansion approach and

aggregated at the HUC-10 watershed spatial scale.

35



)

Percent increase in
capacity

- <5%
5% -25%
B> 25%

150

Figure 18. Historical condition: Estimated increase in spring Chinook parr capacity from
contemporary conditions resulting from side channel creation in floodplains reconnected through
stream restoration to historical width as determined by the valley bottom filled to a depth of 6 m.
In addition to range and croplands, this scenario restores areas currently limited by urbanization
and large roads. Estimates were made with the habitat expansion approach and aggregated at the
HUC-10 watershed spatial scale.
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Figure 19. Rangeland restoration: Estimated increase in spring Chinook parr capacity from
contemporary conditions resulting from side channel creation in floodplains reconnected through
stream restoration in rangeland. Additionally, we assume restoration of habitat currently impeded
by small private roads. Estimates were made with the habitat expansion approach and aggregated
at the HUC-10 watershed spatial scale.

37



)

Percent increase in
capacity

- <5%
5% -25%

0 75 150
T

Figure 20. Rangeland and cropland restoration: Estimated increase in spring Chinook parr
capacity from contemporary conditions resulting from side channel creation in floodplains
reconnected through stream restoration in rangeland and cropland. Additionally, we assume
restoration of habitat currently impeded by small private roads. Estimates were made with the
habitat expansion approach and aggregated at the HUC-10 watershed spatial scale.
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Table 5. Spring and summer Chinook parr summer rearing capacity by HUC-8 sub-basin. Main
stem indicates the expansion method sum of bank, bar, and mid-channel capacity. Contemporary
and historical side channel indicate the expansion method estimate for current and full floodplain
reconnection respectively. Expansion total is the sum of main stem and contemporary side
channel estimates. QRF total indicates estimates from quantile random forest (90" percentile) of
ISEMP fish survey data and total habitat area. Both historical and contemporary estimates are
limited to the currently accessible habitats defined as rearing habitat by StreamNet.

Contemporary Historical side  >8mBFW >8mBFW  >8mBFW  <8mBFW

HUC-8 Name Mainstem  side channel channel Expansion total QRF total 5200/ hectare total

17020005 Chief Joseph 6,020 3327 4,109 9,348 4,969 7,753 169
17020006 Okanogan 1,870,864 1,990,837 2,591,994 3,861,701 5,028,897 3,029,114 -
17020007 Similkameen 175,554 208,705 252,712 384,258 174519 309,575 -
17020008 Methow 1,844,013 1,356,729 1,510,509 3,200,742 1,444,670 2,607,603 21,557
17020009 Lake Chelan 15,849 6,092 11,406 21,941 10,157 17,430 -
17020010 Upper Columbia-Entiat 282,497 166,744 234,201 449,241 142,817 364,158 9,498
17020011 Wenatchee 1,641,537 1,227,573 1,585,610 2,869,110 1,218,187 2,299,398 40,374
17020012 Moses Coulee 3,196 - - 3,196 2,576 2,652 -
17030001 Upper Yakima 1,800,801 1,698,267 2,077,083 3,499,068 1,801,625 2,817,275 37,807
17030002 Naches 705,590 635,650 695,451 1,341,240 737,197 1,084,655 40,522
17030003 Lower Yakima, Washington 2,543,289 3,534,895 3,914,090 6,078,184 6,807,410 4,935,626 50,341
17060101 Hells Canyon 37,792 - - 37,792 31,256 28,104 40,291
17060102 Imnaha 782,669 102,757 115,285 885,426 513,132 687,420 62,733
17060103 Lower Snake-Asotin 1,744,703 399,915 471,839 2144618 2815432 1,562,290 16,696
17060104 Upper Grande Ronde 1,187,687 316,190 1443877 1503877 2,176,811 1,160,457 86,611
17060105 Wallowa 1,011,256 251,142 549,775 1262398 1,153,676 966,512 35,964
17060106 Lower Grande Ronde 778,464 98,725 96,725 877,189 633,121 657,119 70,300
17060107 Lower Snake-Tucannon 211,863 37,506 54,425 249,368 236,333 192,086 8,420
17060201 Upper Salmon 2,091,593 968,630 1,418,538 3,060,223 3118350 2,402,031 572,012
17060202 Pahsimeroi 156,652 192,846 226,614 349,497 184,292 289,469 -
17060203 Middle Salmon-Panther 2,065,635 1435910 1,647,985 3,501,545 4,302,807 2,732,895 209,370
17060204 Lemhi 378,964 191,343 725,637 570,307 156,398 458,452 43315
17060205 Upper Middle Fork Salmon 988,871 527,325 545,309 1516,197 1,742,764 1,209,109 380,324
17060206 Lower Middle Fork Salmon 1,273,261 118,845 124,908 1,392,105 1,735,069 1,014,904 268,377
17060207 Middle Salmon-Chamberlain 2,273,860 51,704 51,704 2325564 2,228,930 1,654,933 194,336
17060208 South Fork Salmon 1,440,726 238,943 252,282 1679670 2,044,231 1,263,941 253,775
17060209 Lower Salmon 2,716,293 132,656 188,187 2848949 2594527 2,070,358 81,506
17060210 Little Salmon 401,449 59,964 72,772 461,413 543,339 354,089 33937
17060301 Upper Selway 919,134 106,914 106,865 1,026,048 819,270 765,741 190,910
17060302 Lower Selway 1,199,377 75,209 63,528 1,274,586 801,184 944,119 98,923
17060303 Lochsa 1,584,042 177,109 211,966 1,761,151 1,591,429 1,304,017 165,793
17060304 Middle Fork Clearwater 657,954 226,683 153,983 884,637 376,147 684,528 56,743
17060305 South Fork Clearwater 1,084,190 156,383 203,401 1,240,573 858,797 927,369 254,070
17060306 Clearwater 2,217,489 560,702 672,080 2,778192 1,486,872 2,146,813 277,559
17060308 Lower North Fork Clearwater 31,171 15,029 16,286 46,199 21,859 36,123 -
17070102 Walla Walla 313,123 28,909 125,773 342,033 364,072 274,270 21,345
17070103 Umatilla 891,865 552,762 1,356,644 1444628 1,203,297 1,159,626 38,983
17070105 Middle Columbia-Hood 661,764 402,549 432,048 1,064,312 918,031 839,490 106,043
17070106 Klickitat 929,418 554,051 620,610 1483469 1460173 1,158,633 7,745
17070201 Upper John Day 848,766 580,470 834,230 1429236 1,930,852 1,176,785 32,296
17070202 North Fork John Day 1,175,717 259,474 355,880 1435191 1,560,261 1,097,226 88,239
17070203 Middle Fork John Day 432,823 116,174 152,663 548,997 245816 436,931 94,416
17070204 Lower John Day 2,919,820 2,032,601 2,208,101 4952420 4,815,557 3,870,168 45
17070301 Upper Deschutes 343,889 62,192 87,508 406,081 458,014 317,004 2,739
17070305 Lower Crooked 499,692 105,642 454,922 605,335 800,183 461,405 -
17070306 Lower Deschutes 2,519,498 683,927 911,747 3203425 2537810 2,456,100 14,817
17070307 Trout 663 871 1,233 1534 494 1,286 -
17080001 Lower Columbia-Sandy 865,675 401,395 446,205 1,267,070 1,103,586 977,073 33,101
17080002 Lewis 210,898 75,033 114,189 285931 319,336 218,374 28,771
17080003 Lower Columbia-Clatskanie 394,918 111,639 127,199 506,556 497,068 373,926 43,193
17080004 Upper Cowlitz 960,651 1,013,984 1,153,777 1974635 1,792,603 1574,004 10,663
17080005 Lower Cowlitz 632,219 346,058 514,364 978276 1,177,151 743,042 33,168
17090001 Middle Fork Willamette 1,527,465 1,557,756 1,777,566 3085220 3,009,425 2,470,267 131,771
17090002 Coast Fork Willamette 430,144 283,296 724,829 713440 1,245,196 557,368 2,310
17090003 Upper Willamette 3,223,180 4,176,266 7,041,368 7,399,446 16,479,084 5,894,195 41,321
17090004 Mckenzie 2,148,831 3,059,165 3,461,332 5207995 5443837 4,199,754 127,283
17090005 North Santiam 1,570,824 1,928,816 2,318,093 3499640 4,922,581 2,801,469 47,428
17090006 South Santiam 1,373,490 1,039,429 1,520,966 2412919 4,017,124 1,907,205 26,642
17090007 Middle Willamette 2,882,041 2,826,205 3,954,036 5708246 9,112,475 4,480,042 65,055
17090008 Yamhill 567,837 46,950 10,547 614,787 923,017 426,453 21,309
17090009 Molalla-Pudding 1,280,949 390,182 594,002 1671132 2,532,000 1,273,057 31,219
17090011 Clackamas 1,338,408 747,720 843,307 2,086,128 2,477,358 1,611,201 21,188
17090012 Lower Willamette 39,637 1848 6,037 41485 41,686 29,328 23475
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Discussion
Mainstem habitat

Our estimates of bankfull width for main stem channels were in general larger than those
estimated by Beechie and Imaki (2014). However, we have not yet validated the precision of our
satellite imagery based measurements with field measurements. On the other hand, bank and bar
widths, where edge velocity and depth is in the preferred region for Chinook, are driven largely
by the intercept from equations 1 and 2. Therefore, misidentification of bankfull width has a
larger effect on the mid-channel area, which we assume is largely unused by Chinook in streams
greater than 8 m bankfull width. Although our model of the ratio of banks and bars for edge
habitat performs well in areas with little bank modification, we currently do not model either
other edge habitats or the likely change in edge habitat with different land use or riparian
condition. For example many areas may have hydromodified banks with lower capacity for
juvenile salmonids. Similarly, main stem backwaters may have a high capacity and contribute
disproportionately to capacity. Future model development should include main stem habitat
characterization at our random selection of sites to better assess current condition and changes to
edge habitat with varying land use practices. In addition, we cannot assess edge widths from
satellite imagery so our current estimates rely heavily on regressions of bar and bank width from
measurements in the Chehalis River basin. Although there are likely many similaries between the
banks and bar forming processes in the Chehalis and CRB, an emphasis should be placed on
measuring bar and bank widths at various location in the CRB where flow and sediment
dynamics may differ from the more coastal, low elevation floodplain of the Chehalis R.
Additionally, our model does not address other mainstem habitat forms such as hydromodified
banks and backwaters; which have been shown to decrease and increase rearing capacity,
respectively. Hydromodified banks in particular may be prominent in areas below impoundments
or with substantial urban development and road density, and have the potential to substantially

decrease rearing capacity.
Side channel habitat

Side channels are known to be prominent rearing habitats for young of the year salmonids
(Morley et al. 2005, Bellmore et al. 2013). Our model of side channel area was developed with

stratified randomly chosen sites throughout the Columbia River basin, including areas not
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currently or historically occupied by salmon. Our sampling design helps to ensure that both
modified and unmodified stream segments with similar underlying landform characteristics (e.g.
slope, historical floodplain width) were represented in model development. This representation
should allow more accurate estimation of the historical state of the side channel in currently
modified areas. In our final predictive model floodplain width was the most important variable in
predicting side channel presence. Ecoregion was included, but was less important, lending
credence to making training measurements throughout the CRB. Surprisingly, land cover type
immediately adjacent to the site did not improve model accuracy. Our side channel models were
constructed with estimates of floodplain width that best matched measured active channel widths
for each site; historical floodplain restricted by urban, rangeland and cropland land classes.
Partial dependence plots of floodplain widths on side channel presence and amount both
indicated a saturating effect of floodplain at a width of ca. 2000 m. More prominently for
restoration actions of floodplain, the steep slope at the origin of the partial dependence plots
indicates that even moderate increases in useable floodplain width can greatly increase the
presence and width of side channel habitats. To make specific estimates of the likely gains in
side channel habitat with large scale floodplain reconnection, we supplied our models with
floodplain widths that reclaim rangeland, or rangeland and cropland. Historical estimates assume
a completely unrestricted floodplain. On a basinwide scale, most gains in side channel area were
made with a rangeland restoration scenario, with inclusion of cropland adding a small amount to
the total. From a restoration perspective, this may be encouraging as restoration of the rangeland
floodplain may be more feasible than with cropland. By comparison, floodplain reconnection in

urbanized areas (including impervious roads) has little effect on overall capacity.

Despite much discussion in the published literature about the value of side channel habitats for
juvenile salmon rearing, the vast majority of the parr density data in side channels is from studies
of coho salmon, while relatively little side channel-specific density data exist for Chinook.
However, what little data are available appear to support the higher rearing densities for
Chinook, and is supported by the similar values for habitat expansion and quantile regression in

smaller streams.

Our estimates of capacity from habitat expansion and quantile regression are similar in many

reaches for Chinook salmon, providing a useful corroboration from two different approaches and
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fish density data sources. Unlike habitat expansion, the quantile regression approach estimates an
average capacity for all wetted areas of a stream segment (side and mainstem combined).
Quantile regression random forest estimates from ISEMP stream survey data of primarily spring-
run Chinook were used to make summer Chinook parr estimates, and were in lower at most sites,
and quite a bit higher at a few sites. In particular, large streams where much of the habitat is
allocated to low value mid-channel habitat in the expansion model, is estimated at a single value
across its width in the quantile regression model, leading to higher estimates in large streams, as
large streams are not included in the ISEMP stream survey.

Much of the data informing the habitat expansion estimates is derived from surveys in north
Cascade Puget Sound rivers (e.g. Skagit R.), where Chinook densities may differ from areas of
the upper and mid-Columbia where much of the CHaMP and ISEMP monitoring is conducted.
Although local data are nearly always preferred to remove the confounding watershed level
effects (e.g. primary productivity, temperature, predation, etc.), Chinook in some CRB
watersheds may be far enough below capacity that even local sampling may not detect evidence

of density dependence or capacity.
Future directions

A thorough body of work has related presence of wood in streams to habitat quality for
salmonids (Montgomery et al. 2003). Recently, it has been demonstrated that much of the benefit
of wood in streams for salmonids comes through the creation of pool and side channel habitat
(Beechie and Sibley 1997). Additional information about the riparian buffer width and canopy
height would provide useful metrics of both the delivery of large wood to the stream, as well as
the cooling shade effect of the riparian canopy. Therefore, an estimate of wood in streams would
likely increase the accuracy of side channel estimation as well as fish capacity. New spatially
continuous models of tree stand height, species composition, and canopy cover provided useful
shade covariates in stream temperature estimation (Isaak 2016), and may prove useful in
estimating the contribution of wood delivery to stream segments. Beechie and Imaki (2014)
speculated that estimates of large wood may have greatly improved the channel type estimation

model that forms much of the foundation of our current side channel estimation.

In addition to large wood inputs, there are undoubtedly other aspects of stream habitat

loss that are not estimable at this spatial scale. For example, over-widening in areas with heavy
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grazing pressure and a history of flashboard dams have degraded habitats in ways that are not
accounted for in our current model. Additionally, a historical legacy that has fundamentally
altered the stream morphology would not be well predicted by our model (e.g. Mining tailings in
Yankee Fork, Salmon River, or VVolcanic runoff in the Toutle R.). Current remote sensing
techniques that rely on satellite imagery are often too coarse to estimate finescale features. In
addition, headwater tributaries are largely heavily forested. Although these forests and riparian
zones may signal intact stream channels and healthy fish habitat, these areas cannot be verified
from satellite imagery and would require local stream surveys to measure channel forms.
Fortunately, many headwater streams are estimated to be <8 m bankfull width and are not

expected to have persistent side channel habitat.

Our estimates demonstrate only modest losses in habitat area, and hence capacity, from
historical to current estimates. Although in many places floodplains are greatly restricted from
their historical state, truncation of the floodplain does not necessarily translate into large losses
of side channels. The active channel width (i.e. the region of the floodplain in each stream
segment currently used for channel forming processes) is a better indicator of potential side
channel habitat, but cannot be readily estimated with the current resolution digital elevation
model available for the CRB. Although higher resolution Light Detection and Ranging (LiDAR)
techniques increase the elevation detail, use of LIDAR derived elevations has a tendency to
overestimate inundated areas. However, LIDAR may be useful for defining active channel
widths with better accuracy than flooding the relatively coarse scale (10 m) digital elevation
model, but LIDAR coverage throughout the CRB is patchy. Therefore, additional information
from ground based surveys like the Columbia Habitat Monitoring Program (CHaMP) may

provide the best validation of estimates, where they are available.

Finally, further salmon capacity estimation work from habitat area should include aspects
of water quality. In particular, temperature has important implications for all life stages of
salmonids, from mortality of migrating adults, to embryo development rates and mortality, and
life history determination, habitat occupancy, and growth of juveniles. Current and future
summer temperatures can now be modeled for the entire CRB (Isaak 2016), and future work

should move from the base capacity as determined by wetted habitat area to capacity limitations
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based on extreme environmental conditions like high summer temperature, or low overwinter

temperatures, both of which may be limiting for salmon growth and survival .
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CHAPTER 2: HABITAT

2.c: Modeling juvenile Chinook production in 22 Columbia River stream locations

Martin Liermann (NOAA Fisheries, NWFSC, Seattle), Morgan H. Bond (Ocean Associates,
contracted to NOAA Fisheries, NWFSC, Seattle)

Introduction

Understanding juvenile survival and capacity is important

Freshwater habitat condition is one of the factors affecting the recovery and maintenance of
Chinook salmon populations in Columbia River (citation). Habitat restoration is therefore one of
the tools being used in restoration efforts (Roni et al. 2002). While much work has been done to
better understand the effects of habitat conditions on Chinook salmon freshwater population
dynamics, this work has tended to occur in relatively small geographic areas (Cederholm et al.
1997, Roni et al. 2002), has focused on small scale habitat fish relationships and often focuses on
a single point in time (e.g., summer density when data collection is feasible) (Roni and Quinn
2001). It is therefore difficult to know if these relationships are generalizable across broader
regions, and if results demonstrated at small temporal and spatial scales, scale up to encompass
the aggregate population dynamics as these fish grow, experience mortality and move though the

freshwater habitat (Reeves et al. 1989).

Challenges of using data aggregated to the basin scale

However, there are also many challenges to using fish data that aggregates these factors over
time and space (for example screw trap data or total estimated spawners). Due to resources

necessary to collect this type of data and the fact that the number of basins declines with



increasing scale, the sample size tends to be small limiting the number of fish habitat
relationships that can be effectively explored. For example, Harrel (2015) recommends the
number of predictor variables considered be limited to N/10 or less (where N is the sample size)
when developing predictive models. Due to the complex suite of life history strategies that
Chinook salmon exhibit, the habitat variables that are most important may vary from year to year
and location to location. Further, a single metric of capacity that is comparable across regions
may be difficult to achieve when alternative life histories predominate among watersheds or
populations. Therefore, most capacity work focuses on a life stage that is common to most (e.g.
summer parr) (Justice et al. 2017) or all populations (e.g. smolts, or smolt equivalents) (Walters
et al. 2013). Finally, historic patterns of development have tended to correlate with habitat
characteristics. For example, lower elevation reaches with broad floodplains are more likely to
be developed than those that are higher elevation and confined (This report, Chapter 2.b). This
confounds the relationship between factors that define a sites potential and land use making it

difficult to disentangle the relative impacts of the two factors (Lucero et al. 2011).

Possible solutions

There are a number of approaches for dealing with situations where there are large numbers of
potential predictor variables and a paucity of data (e.g. see chapter 4 of Harrell 2015). The set of
potential predictor variables can be reduced before including the y variable by excluding
variables based on expert knowledge and the correlation structure, or a small number of new
composite variables can be constructed (e.g. Principle Components Analysis). Alternatively
approaches such as LASSO regression, random forests, and model averaging include automated

dimension reduction. Ultimately, without constraining the set of potential hypotheses though



expert knowledge (assumptions), the results will almost certainly be vague, supporting many

different potential mechanisms.

Our approach

Previous efforts to model whole watershed capacity from spawner-recruit data have focused on
including watershed size as a covariate (Parken et al. 2006, Liermann et al. 2010) to allow
predictions for areas without fish abundance estimates. Although watershed area is positively
correlated with habitat area, other landscape and climactic features will mediate the amount and
quality of habitat available for stream fishes within a watershed. Fortunately, stream network and
landscape attributes have been developed for the entire Columbia River basin (Hall et al. 2007,
Beechie and Imaki 2014) and can be aggregated at spatial scales that correspond with estimates
of fish production. The habitat expansion approach has been used to estimate Chinook parr
capacity by summing total estimates of main stem and side channel habitat area from habitat
models, and applying capacity densities of fish to those areas (This report, Chapter 2.b). The
habitat expansion capacity forms an index of habitat area weighted by the capacity of each
habitat type for juvenile Chinook. For example, two watersheds with a similar watershed area
may have different geomorphology and precipitation resulting in different useable habitat area
and capacity despite their similar area. In this context, the habitat expansion based capacity may
prove a more useful predictor of rearing capacity than watershed area. Here we use screw trap
data from 22 basins across the Columbia River basin (CRB) to investigate the utility of using a
habitat based metric of Chinook parr capacity (This report, Chapter 2.b) to explain patterns in
juvenile production. Here, all of the potential habitat metrics have been condensed into this
single metric of capacity before the modeling process. Instead of focusing on which components

of the physical habitat are important we explore how this capacity metric performs and illustrate



how the metric in combination with the fish data can be used to make predictions about juvenile
population dynamics across the different basins. Through this modeling we can account for
density dependence, incorporate different life-history strategies, and estimate aggregate survival

over most of the freshwater residence.

Methods

Rotary screw trap data

We compiled annual abundance estimates of redds and offspring fall migrant parr (£ SE) and
spring smolts (£ SE) from 22 sites throughout the CRB (Figure 1). These data were collected by
ODFW, WDFW, IFG, the Nez Perce Tribe, Shoshone-Bannock Tribe and represent 435 trap-
years of monitoring effort. All included juvenile abundance estimates were collected with rotary
screw traps (Volkhardt et al. 2007). Abundance was estimated from raw catch data by correcting
for changes in trap efficiency with a series of mark-and-recapture trials, where marked groups of
fish were released above the traps and recaptured in the days following release. The trapping
period was basin specific but depending on both the estimated timing of out-migration, and the
feasibility of trap operation given the in-river conditions. Similarly, the years of trap operation
varied among locations, but there is broad overlap in trap operation among sites from 1993-2014.
Redd counts were estimated from extrapolation of foot or boat surveys in index reaches, or in

some cases from a weir where total estimates of fish passing the weir were used to estimate redds

Study area

For each trap site, we used a habitat expansion approach to estimate summer parr rearing

capacity (This report, Chapter 2.b) for all areas upstream of the trap that are considered



accessible to and used for rearing by spring or summer run Chinook salmon via the StreamNet
spatial database (StreamNet Data 2012, Figure 1.). For each 200 m segment of stream in the

trapping region, we estimated the amount of side channel, bank, bar, and mid-channel habitat.
Maximum rearing densities were applied to each habitat area, and were summed for all stream

segments to produce an index of parr capacity for each trap region (This report, Chapter 2.b).

PIT tagging data for survival to dam

A subset of the fish captured at 20 of the traps were tagged using passive integrated transponder
(PIT) tags (Prentice et al. 1990a, Prentice et al. 1990b). A subset of these fish were then detected
at antenna arrays downstream at the first major dam with PIT tag detection in juvenile passage
facilities (Axel et al. 2005). For approximately 76% of the years and traps, estimates of
uncertainty were also available either as a standard error or confidence interval. To accommodate
the observation component of our model we used these values along with the estimates to derive
log-normal observation distributions. That is, we found log-normal parameters that came closest
to explaining the estimate along with standard error or confidence interval. In cases where
uncertainty was not describe for an estimate, we used the average estimated standard deviation
from other years for that population. If no, estimates of uncertainty were available for a

population we used the average estimate of standard deviation across all populations.

The statistical models

We constructed two separate models, a parr capacity model describing the population dyanmics
from spanwer to migration past the screw traps and a trap to dam survival model which describes

the survival of fish PIT tagged at the traps to the first major downstream dam.



Modeling juvenile out-migrants

Population dynamics from spawner to juvenile out-migrant is modeled using a state space model.
This type of model includes a process model which describes the underlying population
dynamics and an observation model which relates the observed data to the predictions made in

the process model.
The process model
Parr are modeled as a function of spawners. Here we use the hockey stick model.
parrPred;, = f(spawners, ;, prod;, capacity;) = min(prod;spawners; ,, capacity;)
We then add process error to account for year to year variability in recruitment.
parr;, ~ lognormal(parrPred,;,, parrSD;)

Ly’

Because we do not observe parr, parr; ,, is a latent variable, or parameter, that the model

estimates.

Population specific productivity and and capacity are modeled hierarchically. That is, they are

allowed to be differ across population but are assumed to come from a common distribuiton.
log(prod;) ~ normal(prodMu, prodSD)

For the capacity paramters, the population specific means are assumed to follow a log-log

relationship with the habitat based capacity estimate (Bond et al. chapter 2 b), capHab;,
log(capacity;) ~ normal(capMu + capSlope * capHab;, capSD)

Note that capHab; is centered so that the intercept of the relation is the mean, capMu.



The proportion of parr that migrate out of the basin before the winter is modeled as:
parrOut;, = parr;,pOut;,

where pOut,; ,, is modeled using the logistic normal distribution. Year and population specific
temperatures temp; ,, and population specific basin areas capHab; are included as predictor

variables.
logit(pOut;,) ~ normal(pOutMuPop; + pOutMuYr, + tempSlope * temp, ,,, pOutSD)
pOutMuPop; ~ normal(pOutMu + pOutSlope *x capHab;, pOutPopSD)
pOutMuYr, ~ normal(0,pOutYrSD)

Finally, the fish that overwinter are subjected to a constant over winter mortality and then all the
remaining fish are assumed to migrate out. And the number that migrate out the following spring

is:
smoltOut;, = parr;, (1 — pOut;, ) * winterSurv

Winter survival is assumed constant because productivity, pOut, and over winter survival cannot

all be identified with spawner and trap data.

We also included simple models of temperature and spawners to allow for missing years.

Spawners was modeled as:

log(spawners; )
~ normal(spawnersMu + capHab; + spawnersMuPop;

+ spawnersMuYr,, spawnersSD)



Where spawnersMuPop; and spawnersMuY, are assumed to be normally distributed.
Temperature is modeled as:
temp; ,, ~ normal(tempMuPopgffect; + tempMuYr,, tempSD)
Where tempMuPop; and tempMuYT, are assumed to be normally distributed.
Observation model
Observed out-migrants in the fall and spring are modeled using a log normal distribution.
log(parrOutObs;,) ~ normal(parrOut;,, parrOutObsSD; )

log(smoltOutObs;, ) ~ normal(smoltOut;,, smoltOutObsSD; )

Notice that parrOutObsSD; ,, and smoltOutObsSD;,, are assumed known (not estimated by the

model).

Observed spawners are also modeled using the log normal distribution, where the standard

deviation is fixed at 0.15.
log(spawnersObs;,) ~ normal(spawners;,, spawnersObsSD)

Temperature is assumed to be measured with negligible observation error so an observation error

model is not included.
Modeling Survival from trap to dam

Parr and smolt survival from the traps to the first dam encountered was estimated by PIT tagging

fish captured in the traps. We treated the survival estimates along with standard errors or



confidence intervals as data and modeled the underlying survival process using logistic normal

distributions.

Process model

Predicted survival of parr and smolt to the dams included grand means as well as population and

year effects.
logit(parrSurv;,) ~ normal(parrMu + parrMuPop; + parrMuYr,, parrSD)
logit(smoltSurv;,) ~ normal(smoltMu + smoltMuPop; + smoltMuYr,, smoltSD)

The population effects parrMuPop; and smoltMuPop; were modeled hierarchically and

assumed to follow normal distributions.
parrMuPop; ~ normal(0, parrMuPopSD)
smoltMuPop; ~ normal(0, smoltMuPopSD)
The year effects were modeled as centered random walks.
parrMuYrRW,, ~ normal(parrMuYrRW,,_,,parrMuYrSD)
parrMuYr = parrMuYrRW /mean(parrMuYrRW)
smoltMuYrRW, ~ normal(smoltMuYrRW,_,, smoltMuYrSD)
smoltMuYr = smoltMuYrRW /mean(smoltMuYrRW)

Observation model

observation error in the logit survivals is assumed to follow a normal distribution.



logit(parrSurvObs;, ) ~ normal(logit(parrSurv; ), parrSurvSD; )

logit(smoltSurvObs;,) ~ normal(logit(smoltSurv, ), smoltSurvSD; ,,)

Results
Predicting parr and smolt out-migrants

The parr habitat capacity index (This report, Chapter 2.b) explained about half of the
variability in estimated capacity (posterior median = 0.49, 95% CI = 0.12-0.69) (Figure 2,
left panel). The posterior median for the slope of the relationship is 0.73 with very high
probability that the slope is positive (Figure 3, upper panel). When the slope is less than
one, the relationship is non-linear with less predicted capacity per unit of habitat index as
the habitat unit index increases. However, the posterior does no exclude the possibility that
the slope is 1. To further explore this possibility we also fit the model with the slope fixed
to one (figure 2, panel 3). In this case the model appeared to fit comparably with slightly
over 50% of the variability explained (posterior median = 0.55, 95% CI = 0.17-0.72). Notice
that capacity is also estimated, so these values are not comparable in the same way as a
standard regression. When the slope is fixed at one the relationship is simply
capacity=axcapHabi. The posterior median for a was, 0.113 (95% CI = 0.003-0.187). The
parr habitat index was better at explaining patterns in estimated parr capacity than basin
area (figure 2, panels 1 and 2). Basin area explained about 1/5th of the variability
(posterior median = 0.21 95% CI =-0.18 0.53). Individual fits of the model to the
relationship between spawners and smolt out-migrants varied across populations (figure
4). For some populations the capacity was relatively constrained by the data while for

other locations estimates of capacity was very uncertain.
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The estimated proportion of parr that left the basin in the fall, pOut varied between
populations, ranging from less than 5% for the Methow River to close to 75% for Marsh
Creek (figure 5, panel 1). The parr habitat index explained about 40% of this variability,
with larger basins tending to have fewer fall out-migrants. The results were comparable
with or without setting the slope between capacity and the parr habitat index to 1 (figure 5,
panel 3). However, basin area explained less than 15% of the variability in pOut (figure 5,
panel 2). There was a slight negative relationship between year and basin specific summer
temperature and pOut (figure 3, bottom panel). That is, basins with colder temperatures

were predicted to have more fall out-migrants.

Predicting survival

Trap to dam survival was not consistently available across traps and years (figures 6 and
7). However, there were apparent patterns across year and site. Average survival of parr
from the trap to the first dam tended to range from 20% to 40%, while smolt to dam
survival tended to fall between 40% and 70%. There were common temporal patterns in
trap to dam survival across the populations especially for parr (see the year factor panel in
figures 6 and 7). The ratio of parr survival to smolt survival may serve as a very
approximate estimate of over-winter survival (figure 8). This also varied across population

and years but tended to average around 50%.

Discussion

The parr habitat index proved useful in explaining between basin differences in estimated
capacity. The parr habitat index performed substanially better than basin area, explaining

more than twice as much of the variability in estimated capacity. While the posterior

1"



distribution for the slope parameter in the log-log relationship was centered below one
(median = 0.79), a value of one was plausible which would simplify the relationship to
capacity = a X capHab; where a = 0.11 (posterior median). While the parr habitat index
was based on observed densities of fish, there are a number of reasons this value may be
less than 1. For example, we define parr as the number of parr immediately before out-
migration in the fall. Parr densities, on the other hand, are often measured earlier in the
summer. In addition, the densities used in the habitat index were based on work in the
Skagit River, much of which is in relatively good condition and differs substantially from
the east side basins in the study. Other possible explanations include hatchery effects,
clumpy distributions of spawners creating small scale density dependence (Walters et al.
2013). This relationship between capacity and the parr habitat index can be used to predict
juvenile production in other basins without smolt traps. Since the index can also be
calculated based on a hypothetical restored basin, where human impacts are removed,
restoration effect sizes can be expressed in terms of predicted increases in parr capacity

(or juvenile production at full seeding).

The proportion of parr that migrated out of the basin in fall tended to be higher for basins
with smaller parr habitat indices. There are a number of plausible explanations for this
pattern. If fish tend to move a fixed distance downstream, then a higher proportion will
tend to leave a smaller basin. Smaller basins will also be less likely to have larger substrate
that has been shown to be a preferred over-winter habitat for juvenile chinook. Smaller
basins tend to be at higher elevation and colder in the winter, providing another potential
mechanism. We added temperature to our model of pOut but the temperatures that were

available were summer temperatures, which may not correlate well with winter
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temperatures. In addition, because basin size and temperature are correlated, this will
make estimating the two coefficients difficult. We found some weak evidence for a positive
effect of temperature on pOut but this is an area that will need additional work. Predicting
the proportion of fish that leave at different life history stages provides information to
managers on the degree to which over-winter habitat is important. Predictions can also be
used to identify populations with anomalous migration patterns which may indicate
restoration potential. Because pOut is linked to the parr habitat index and temperature,

estimates of pOut can be made for populations without fish data.

To estimate the effective freshwater productivity of individual basins requires estimates of
survival during the remainder of freshwater residence. The differences in trap to dam
survival between populations for both parr and smolt migrants suggests that the larger
geographic context is important. Next steps in this research include integrating the basin
specific spawner to parr productivies with pOut, trap to dam survivals and dam to
Bonneville survivals to construct basin specific estimates of productivity that integrate
over the entire period of juvenile freshwater residence. This can then be used to help
prioritize basins for restoration. Those basins that appear to be limited by capacity and not
productivity (due to lower downstream survival) would tend to be better candidates for

parr habitat restoration.
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Figure 1. Included locations in the CRB with rotary screw trap (points) abundance data for
spring-run Chinook fall migrant parr and spring smolts. Orange regions indicate the watershed
area upstream of the trap that was included in habitat expansion estimates of summer parr
capacity. 1. Chiwawa River, 2. Entiat R., 3. Twisp R., 4. Methow R., 5. Toucannon R., 6. Upper
mainstem John Day R., 7. Middle Fork John Day R., 8. Upper Grande Ronde R., 9. Catherine
Creek, 10. Minam R., 11. Lostine R., 12. Imnaha R., 13. Crooked Fork Creek, 14. Red R., 15.
Secesh R., 16. South Fork Salmon R., 17. Mash Creek, 18. Upper Salmon R., 19. East Fork
Salmon R., 20. Pahsimeroi R., 21. Hayden Creek, 22. Upper Lemhi R.
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Figure 2. The relationship between metrics of habitat capacity (x-axis) and model estimated
capacity (y-axis). The left panel represents the base model run where a log-log relationship is
assumed between the parr habitat index and estimated capacity. In the middle panel, the same
model is run, but log basin area is substituted for the parr index. In the right panel, the base
model is run, but the slope is constrained to be 1.
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Figure 3. The posterior distributions for the slopes between estimated capacity and the parr
habitat index (upper panel), pOut and the parr capacity index, and pOut and summer
temperature. The probability that the values are above or below zero is included above each plot.
The three densities are plotted such that the magnitudes are relative to the standard deviation of
the x-variable. This means that magnitude (distance above or below 0) is a rough metric of

parameter importance.
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Figure 6. Parr survival from the smolt trap to the first downstream dam based on PIT tags. The
points represent the estimate, the vertical black bars are 80% confidence intervals, and the green
bars are plausible year and basin specific model fits based on 20 random samples from the
posterior distribution. The vertical orange bars represent the 80% credible interval for population
specific average survival.
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points represent the estimate, the vertical black bars are 80% confidence intervals, and the green
bars are plausible year and basin specific model fits based on 20 random samples from the
posterior distribution. The vertical orange bars represent the 80% credible interval for population
specific average survival.
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Figure 8. The ration of parr survival to smolt survival from the smolt trap to the first downstream
dam based on PIT tags. The points represent the estimate, the vertical black bars are 80%
confidence intervals, and the green bars are plausible year and basin specific model fits based on
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CHAPTER 2: HABITAT

2.d Movement & Survival based on Mark-Recapture data

W. Carl Saunders (Department of Watershed Sciences, and Eco Logical Research), Kevin See (QCl),
Shubha Pandit (Terraqua), Eric Buhle (QCl), Nicolaas Bouwes (Eco Logical Research), Pamela Nelle
(Terraqua), Tom Degroseiller (USFWS), Keith VanDenBroek (Terraqua), Chris Jordan (NOAA-NMFS-
NWFSC)

Introduction

Despite a rich history of life-cycle model (LCM) applications to salmon recovery-related
questions (see Good et al. 2007 for a recent review), previous attempts to link habitat restoration
scenarios impacting freshwater life stages with future population performance have met with
limited success. For example, studies have modelled population responses to hypothetical
survival increases assumed to be achievable through habitat restoration, but without explicit
consideration of current conditions or restoration feasibility (e.g., Kareiva et al. 2000). More
recent assessments have integrated habitat—survival relationships and basin-specific habitat
condition into modelling (e.g., McHugh et al. 2004, Scheuerell et al. 2006, Honea et al. 2009),
assessed restoration potential based on relationships between watershed condition and in-stream
habitat metrics (e.g., Sharma et al. 2005, Bartz et al. 2006, Jorgensen et al. 2009), or increased
the spatial resolution of LCMs (Scheuerell et al. 2006). However, parameterization of freshwater
productivity parameters for the majority of density-dependent LCM applications are derived
from stage-specific abundance data (e.g., out migrating smolts and adult returns or redd counts),
which fail to differentiate among juvenile life stages, lack the spatial resolution necessary to
inform most restoration actions, and often require relatively large data sets for accurate

parameter estimation. While the realism of LCMs has thus improved greatly, these tools



continue to inform restoration practice at a coarse level and in the absence of mechanistic insight

on fish—habitat associations.

Although restoration comes in many forms, the general goal of most projects is to increase the
quality or quantity of habitats that are believed to limit particular life stages and overall
population abundance (Barnas et al. 2015). Accordingly, there is a need for modelling
approaches that can accurately depict complex life histories and simultaneously maximize the
realism of species—environment relationships for life stages targeted by management and
restoration. To assess the long-term population-level benefits of specific restoration alternatives
using a life-cycle modelling approach, candidate restoration projects must be translated into an
expected fish response (Honea et al. 2009). While it has proven difficult to estimate the impacts
of habitat restoration on tradition measures of productivity (i.e., smolts per spawner) used for
LCM applications, advances in fish marking and resighting technology have led to a significant
increase in the number of fish that can be marked and an increased ability to estimate population
parameters, such as life-stage specific survival (Skalski et al. 1998, Al-Chokhachy et al. 2009).
This is particularly evident in the Columbia River basin, where over 35 million Pacific salmon

Oncorhynchus spp. and steelhead O. mykiss were tagged with PIT tags between 1987 and 2016.

Mark-recapture data provide an alternative means to estimate stage-specific probabilities of
survival and movement of juvenile salmonids, which can be collected at the reach scale and over
moderate timescales. For example, the Cormack-Jolly-Seber (CJS, Cormack 1964) model has
been used to provide estimates of apparent survival for smolts traveling throughout the mainstem
Columbia River. However, unlike in the mainstem Columbia River where fish behavior is

relatively consistent (all fish are moving in one direction over a relatively short period), the



complex life histories and long periods of juvenile rearing in tributary habitats results in biased
estimates of survival from the CJS model (Barbour et al. 2013, Conner et al. 2015). To account
for complex life histories, high rates of movement among rearing habitats, and use of diverse
resighting technologies (i.e., physical capture methods as well as mobile and passive data
collection from PIT tags), managers and researchers have used the Barker Model (Horton and
Letcher 2008, Conner et al. 2015) and the Multi-State Model (Horton et al. 2011) to analyze
mark-recapture data. Thus, approaches that integrate LCMs with the ability to estimate survival
and movement probability directly from fish tagging data at spatial scale at which restoration is
often implemented, may provide an effective means to prioritize among potential restoration

actions.

Our objectives are to demonstrate how mark-recapture data can be used to 1) estimate time and
stage-specific survival for juvenile anadromous salmonids, 2) estimate movement probabilities
among the spatially linked sub-populations, and 3) describe relationships between these

demographic rates and habitat quality.

In this chapter, we

1) Outline how mark-recapture data can be integrating into LCMs to inform habitat
restoration planning,

2) Provide examples of how estimates of survival and movement probabilities can be used
to increase the realism of LCM applications, and

3) Outline approaches to account for density-dependence in survival and movement

probabilities.



However, we do not attempt provide a census of mark-recapture sampling or analysis across the
Columbia River Basin, but rather outline how tagging data can be used to address restoration
applications and identify critical uncertainties regarding the estimation of demographic rates and

their integration into LCMs.

Linking population demographics to fish habitats

The estimation of capacity and productivity parameters from population-scale abundance data
limits the potential to develop mechanistic means to model the outcome of restoration actions or
correctly account for the extent and spatial location of restoration actions. While indexes of
adult abundance can be obtained for varying spatial extents through redd surveys, estimates of
smolt abundance are often limited to the watershed scale owing to logistical constraints of
operating small traps. Therefore, empirical estimates of productivity (i.e., smolts per spawner)
derived from these data integrate the entire range of habitat conditions present within a
watershed, but cannot be explicitly linked to habitat quality at any given location within the
watershed. In contrast, Mark-recapture data on individually tagged fish can be used to estimate
reach specific survival estimates as well as the probability of individual fish moving between
sampled reaches, depending on sampling intensities. Furthermore, both environmental (e.g.,
metrics of habitat quality) and individual covariates (e.g., fish size or age) can be used to model
specific linkages between demographic rates and habitat quality. For example, Bouwes et al.
(2016) estimated that survival of juvenile steelhead (O. mykiss) in stream reaches where
restoration was conducted to encourage beaver dam development and increase retention of these
dams increased by 52%, relative to stream reaches characterized by entrenched channels.
Similarly, Letcher and Horton (2008) demonstrated the mark-recapture data can be used to

estimate size-dependent, seasonal survival rates for Atlantic salmon (Salmo salar). Thus, by



collecting data at the scale of stream reaches, mark-recapture data can be used to explicitly link
demographic rates for juvenile salmonids to habitat conditions the spatial scale that is consistent

with that at which restoration actions are often implemented.

However, owing to differences in the way mark-recapture data are collected, there is not a single
approach to estimate demographic rates. Nor is there a single approach by which to integrate
these estimates into LCM applications. A common approach to collecting mark-recapture data
on juvenile anadromous salmonids in tributary habitats is to conduct seasonal, or annual,
sampling to physically collect fish (typically over a relatively short period of time), where any
previously unobserved individuals are tagged and those previously captured are noted as
recaptured individuals. This type of sampling yields discrete mark-recapture data, and can be
analyzed under a wide variety of model frameworks (e.g., CJS, Barker, Multistate). In contrast,
many watersheds throughout the Columbia River basin are equipped with passive antenna arrays
to detect fish previously implanted with PIT tags. In such systems, individuals can be detected at
any time they swim over and antenna array and detections typically are not constrained to short
“sampling” periods. This type of data are considered continuous, and can only be jointly
analyzed with discrete data using a limited number of model frameworks (i.e., the Barker

model).

Barker Model applications (juvenile survival example)

In constructing lifecycle model for steelhead in the Middle Fork of the John Day River, we
sought to assess the potential benefits of two commonly pursued restoration approaches; one that
aims to enhance rearing capacity and survival for juveniles by providing cooler summer
temperatures, and another that aims to increase juvenile carrying capacity through increased

structural/hydraulic complexity of select reaches (McHugh et al. 2017). The LCM itself is a



basin- and species-specific (i.e., steelhead) adaptation of the model of Sharma et al. (2005), a
stage-structured, stochastic salmonid population model (Chapter 9d). This LCM propagates
steelhead cohorts through their life history according to a sequence of density-dependent
Beverton-Holt ‘spawner’ (Ni) and ‘recruit’ (Ni+1) relationships (Beverton and Holt 1957,
Moussalli and Hilborn 1986), with stage-specific capacity (ci) and productivity (pi, maximum
recruits per spawner) parameters determining realized survival across life stage transitions. To
parameterize this lifecycle model we estimated stage specific survival probabilities for juvenile
steelhead from mark-recapture data collected from both physical fish collections as well as
continuous fish detections at passive PIT tag arrays, and then determined the productivity (pi)
parameters that corresponded to these values to produce the time series of realized survival

estimates similar to those estimated from mark-recapture data (see below).

To jointly analyze the discrete and continuous mark-recapture data, we used the Barker model
(Barker 1997, Barker and White 1999), which results more precise and typically less bias
estimates of survival than the CJS model (Conner et al. 2015). We used data from approximately
7000 individually tagged juvenile steelhead, sampled during 2007-2013. We estimated survival
separately for fish 60-100 mm total length (TL, age-0 parr) and fish greater than 100 mm TL
(age-1 to age-3 pre-smolts, Figure 5.a.1) (see McHugh et al. 2017 for complete description of
model parameterization). In ongoing work, survival of age-0 parr is also being modeled as a
function of fish length at the time of initial tagging (Figure 5.a.2). The stage-specific
parameterization of the LCM for the Middle Fork John Day hottest to specifically evaluate the
potential impacts of habitat restoration actions targeting water temperature reduction (e.g.,
vegetation plantings additional water allocation) as well as construction of large Woody

structures in tributary and mainstem habitats (results summarized in Chapter 9.d, see McHugh et



al. 2017 for details). Further, in ongoing work the incorporation of size specific survival for
age-0 parr allows us to model survival throughout the watershed is a function of water
temperature and prey availability using a bioenergetics model (Hanson et al. 1997, Hartman and

Kitchell 2008).

To parameterize the LCM for the Middle Fork John Day, we pooled mark-recapture data across
the watershed. However, one of the strengths of using mark-recapture data is that one can obtain
reach-specific estimates of survival model sub-populations with different survival rates resulting
from variation in habitat quality throughout a watershed or to account for different management
actions. For example, development of a LCM for spring Chinook (O. tshawytscha) in the Entiat
River watershed is focused on modeling sub-populations in five geomorphically distinct reaches
of the watershed (Figure 5.a.3). We PIT-tag juvenile Chinook during annual mark-recapture
sampling events in the summer and winter. Additional recapture data are generated at a rotary
screw trap operated March — November at the mouth of the Entiat River. Year-round resight
data are generated through six permanent instream PIT-tag detection arrays installed at the upper
and lower boundaries of each geomorphic reach, temporary arrays operated intermittently within
several minor tributaries and important off-channel habitats, and from detections/recaptures

within the Columbia River hydroelectric system.

We have taken a similar approach to jointly analyzing discrete (i.e., physical fish capture) and
continuous (passive PIT tag relocation) data to obtain seasonal estimates of apparent survival
(owing to relatively low detection of fish leaving the study area) within each of the five
geomorphic regions (Figure 5.a.4). Using these reach-specific estimates of survival, we are able

to evaluate the population consequences of restoration actions in a LCM framework, while



accounting for sub-population dynamics that are typically not captured in LCMs where

watershed productivity is estimated from stage-specific abundance data.

Multi-State Model applications (fish movement example)

Salmonids exhibit a remarkable phenotypic plasticity in migratory life histories and juveniles
may spend several months to years in the freshwater tributary environment before emigrating
from the natal stream to the ocean. Fry dispersal and emigration are not passive responses (e.g.,
Bradford and Taylor 1997), and the timing of emigration varies among species (Friesen et al.
2007), populations (Tucker et al. 2009), and geographic locations (McMichael et al. 2010) and
has an impact on the overall population life cycle. For example, fish size at emigration has a
significant impact on the number of returning adults because smaller size at emigration is often
associated with a low probability of estuary and ocean survival (Sogard 1997, Zabel and
Williams 2002). Movement data within and out of a watershed are an important component of
any assessment of a fish population’s recovery potential and can help to prioritize restoration
activities in a watershed: the estimation of movement between different spatial scales can be
used in a LCM to predict stage-specific (e.g., fry, parr, smolt) abundances in different habitats
within the natal area, allowing us to identify which areas should be prioritized for restoration.
Multistate capture-mark-recapture models are commonly used to estimate movement
probabilities among discrete geographic units or states (Blums et al. 2003, Martin et al. 2007,
Horton et al. 2011). Here we describe an approach to estimate movement probabilities using a
multistate model that is an extension of the Cormack-Jolly-Seber (CJS, Cormack 1964, Jolly
1965, Seber 1965) live recapture model extended to multiple areas or states. However, one

drawback to using the multistate modes is that all data much be transformed into discrete data.



We used data from 5,420 spring Chinook, PIT-tagged during 2010-2013, to estimate movement
probabilities among six states (geomorphicly distinct valley segments, VS1a, VS1b, VS2, VS3,
Mad, Outside), 46% of which were marked and released population in VS1a, 29% in VS3, 14%
in VS2, 6% in the Mad River, and 5% in VS1b (Figure 5.a.3). Preliminary results indicate that
movement probabilities for juvenile spring Chinook differed by valley segment and through
time. There was no evidence of upstream movement, but downstream movement probabilities
segments ranged from 1 to 73%. The greatest downstream movement probability occurred
between summer and winter (over-winter) for fish leaving the watershed from VSla (0.73 + 0.10
(SE)), indicating that fish tagged in VS1 had a very high probability of emigrating out of the
Entiat as sub-yearlings. Fish tagged in VS2 and VS3 had the lowest probability of moving
during the over-winter period. However, this is not unexpected since valley segments 2 and 3
offer the better habitat than VS1, with a lower gradient, multi-thread channel, more pools and

wood, and greater access to the floodplain and off-channel habitat.

These estimates of movement among geomorphically distinct regions of the Entiat River, in
conjunction with region-specific survival estimates (see above), form the basis for developing a
LCM that accounts for both the highly mobile nature of spring Chinook in the Entiat River and
region-specific survival rates, that are likely driven by habitat conditions within the distinct
valley segments. We hypothesize that restoration actions targeted at improving habitat in VS2
and VS3 would further reduce over-winter movement out of these areas, retaining more fish in
higher quality habitat to emigrate as yearlings, and therefore experience higher estuary and ocean
survival rates. However, we acknowledge that responses to habitat improvement reflected in
reduced emigration rates out of VS2 and VS3, may be limited by density dependence observed

as a negative impact on fish growth. We can test these hypotheses with the LCM using the



movement probabilities among valley segments and changes in habitat quantity and quality due

to restoration to evaluate the effect on the life history patterns of juvenile spring Chinook.

Accounting for density-dependence

One potential drawback to parameterizing stage-specific Beverton-Holt (B-H) productivity (pi)
parameters using mark-recapture data is that field sampling is usually conducted under
conditions that are neither at carrying capacity or completely free of density dependence.
Therefore, because the realized survival during stage-to-stage transitions in the LCM framework
outlined above is governed by B-H density-dependent (D-D) dynamics, empirical estimates of
survival (Si, from mark-recapture data) need to be re-scaled into a B-H productivity equivalent
(pi, which represents maximum survival at low abundance). This is typically the case for
juveniles (parr, presmolts), as these stages 1) provide the greatest opportunity for informing

LCM structure with mark-recapture data, and 2) are frequently modeled with D-D present.

One basic approach to determing B-H productivity equivalents from mark-recapture derived

estimates of realized survival can be built upon the following assumptions:

Stage-to-stage transitions occur according to the B-H model, i.e.,:

Niy1 = W (1)

within which pi is the theoretical maximum survival at low abundance (i.e., as abundance
approaches zero) and ci is the population’s carrying capacity for stage i (e.g., 1 = parr and i+1 =

age-1 presmolts, Middle Fork John Day steelhead example above).
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Realized survival (Si), estimated through mark-recapture sampling, attempts to estimate the

following:

S = @)

N

However, if density dependence is assumed to be negligible for a given stage, carrying capacity

(ci) becomes infinite and equation 1 reduces to:
Nit1 = Nip; 3)
and thus the pi input can be taken as equivalent to realized survival (i.e., Si = Ni+1 /Ni).

In contrast, if one can reasonably assume that sampling estimates of Si were derived from years
during which surveyed habitats were fully seeded (i.e., at or near capacity), then equation 1

reduces to:
Nipyr =1+ 4)

which, via substitution and algebraic rearrangement, suggests pi can be approximated from

sampling estimates of Si via the following:

pi =1 ®)

Finally, if it is unclear how abundance during the years for which Si was estimated relate to the
carrying capacity for that life stage, one could modify equation 5 for beliefs/assumptions about

abundance actually being at x % of capacity and compute pi as:

Pi =1 (6)

Llm
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Equations 3, 5 and 6 can be graphical depiction, for varying levels of x, using a carrying capacity

of 100K and the base stage-specific survival estimate of 0.49 (Figure 5.a.5).

Given the synopsis above and the patterns shown in Figure 5.a.5, it is clear that some adjustment
of Si is likely to be necessary for many natural populations. However, because implementation of
juvenile capacity limitation in steelhead LCM calculations is complicated by the presence of
multiple competing ‘presmolt’ ages, there isn’t a straightforward analytical approach to solve

this impasse. For this reason, we numeric solved for a pi value that yield realized survival
estimates (calculated from LCM output) that were similar to those estimated from mark-
recapture data. For example, in the Middle Fork John Day application outline above it appears
that modifying the Si input according to x = 0.25 (i.e., ~ assumes mark-recap sites were seeded at
~25% of the theoretical maximum capacity during sampling years) results in a time series of

realized survivals that mirror the observed Si (Figure 5.a.6).

This exercise illustrates that it is indeed feasible to calibrate the B-H pi parameter (the model
input) so that population dynamics are consistent with the sampling data used to guide overall
model parameterization. Further, it is clear that doing nothing will result in realized survivals

that are biased low relative to sampling data.

In circumstances where there are fewer “competing” juvenile life stages simultaneously
occupying the available habitat being modeled in a LCM (e.g., many Chinook populations), a

more rigorous approach can be taken to solve for stage-specific productivity parameters using a
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combination of survival estimates derived from mark-recapture data and stage-specific
abundance data. For example, In the Lemhi watershed, spring/summer Chinook parr are tagged
throughout the watershed in late summer, and we are interested in estimating their survival as
smolts to Lower Granite Dam (LGD) the following spring. For a species such as Chinook, with
directed juvenile movement downstream, the primary detection sites are at several paired rotary
screw traps and PIT antennas, both within the Lemhi watershed and at the mouth of the Lembhi.
In addition, PIT tags are detected at LGD. However, not all Chinook overwinter in the same
location, so it is necessary to differentiate overwinter survival in the upper and lower areas of the
watershed, as well as in the mainstem Salmon River. To do so, we used the TribPit software
(Buchanan et al. 2015), to take advantage of all the within-watershed detections. It provides
estimates of the joint probabilities of survival and movement for various spatial areas across two
time-periods so that survival during fall or spring migrations within a short time window can be
differentiated from over-winter survival during a longer time window within the same spatial
area. The various movement/survival probabilities can be combined into a single estimate of

survival to LGD for a particular cohort or brood year.

Subsequently, we used a Bayesian state-space framework to construct an integrated population
model (Kéry and Schaub 2012) to estimate productivity parameters for spawner-to-parr and parr-
to-smolt transitions from survival estimates from seven brood years and estimates of spawner
and parr abundances, and associated uncertainty, gathered during the same time period. To
improve productivity parameter estimates, we also incorporated estimates of parr capacity
generated by quantile regression forests (QRF), and the assumption that smolt capacity within

the Lemhi would be less than or equal to parr capacity. Through this process, we can account for
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both the potential influence of density dependence on realized survival rates as well as

observation error in the field data (Figure 5.a.7).

Summary

Extensive fish sampling programs conducted over the last couple of decades have increased our
ability to mark and relocated tagged fish across a wide range of field conditions. Indeed,
sampling technologies exist to collect mark-recapture data on many of the freshwater rearing
lifestages of anadromous salmonids that inhabit both large river systems as well as remote
tributaries. Including these data in life cycle modeling programs is likely to increase the realism
of stage-specific LCM as mark-recapture data can be used to estimate spatially explicit survival
rates. Further, by modeling reach-level survival with environmental and individual covariates
we can test mechanistic hypotheses about factors driving survival rate under varying habitat
conditions, and explicitly at locations were restoration actions have occurred, or are planned.
Finally, the extent of mark-recapture data necessary to produce accurate and precise estimates of
survival, in many systems, is logistically feasible to collect. Ultimately, mark-recapture data can
be used to augment the typical abundance monitoring conducted at the watershed-scale to
specifically allow managers to asked questions about the population level responses of specific
restoration plans. However, although mark-recapture data provide a promising means to life
cycle modeling efforts, there are limits to the extent mark-recapture data are likely to be
appropriate or necessary in the diversity of LCM applications across the Columbia River Basin

(see for example Integrated Population Models Buhle et al Chapter 7.

Future research needs
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1) Barker model
a. Extent to which we will be able to obtain survival estimates for species that
demonstrate a high degree of movement throughout their life history (e.g.,
Chinook)
2) Multistate model
a. Degree to which using continuous data in a discrete model framework biases
survival and transition probabilities
b. It is still unclear what sampling intensity is needed under typical capture and
resighting success to produce accurate and precise estimates.
3) General mark-recapture concerns
a. How to appropriately deal with long time series of mark-recapture data in which
fish that have relatively short life expectancies are no longer in the population, but
remain in the mark-recapture data set
b. Shed tags are likely to cause and increasing issue as more programs conduct
mobile surveying. Ample evidence for this from the Asotin.
c. Currently many monitoring programs are limited by the size of fish that they can
tag.
i. Many Chinook populations are already moving at high rates by the time
they reach a tagable size
ii. Furthermore, the fry life stage is likely a critical life stage for density
dependence drivers of population dynamics (this is one reason that
abundance monitoring data is necessary to constrain survival estimates in

LCM applications.)
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Figure 5.a.1 — Estimates of annual survival for Age-0 parr (black circles) and Age-1+ pre-smolts
(gray circles) steelhead estimated using the Barker model to analyze mark-recapture data
originating from both physical fish capture events (discrete capture data) and passive PIT tag
detections (continuous capture data). Survival estimates were used to parameterize a stage-
specific lifecycle model for steelhead in the Middle Fork John Day River. Error bars show 95%
confidence intervals
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Figure 5.a.2 — Estimates of annual survival for Age-0 parr steelhead estimated using the Barker
model to analyze mark-recapture data originating from both physical fish capture events (discrete
capture data) and passive PIT tag detections (continuous capture data). Survival estimates were
used to parameterize a stage-specific lifecycle model for steelhead in the Middle Fork John Day
River.
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Figure 5.a.3 — Location and extent of the geomorphically distinct valley segments and the Mad
River, the major tributary to the Entiat River, in the Entiat Intensively Monitored Watershed.
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Figure 5.a.4 — Apparent over winter and summer survival probability and 95% confidence

intervals for juvenile spring Chinook salmon by valley segment within the Entiat and Mad River

sub-basin.
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Figure 5.a.5 — The realized survival (Si calc = Ni+1 /Ni) computed from a Beverton-Holt
equation at varying levels of abundance, given (1) a capacity (ci) input of 100K (vertical dashed
line) and (2) with pi (colored lines) approximated from a sampling estimate (horizontal dashed
gray line) given different assumptions (colored lines) about where true population abundance
was (i.e., relative to true carrying capacity) at the time mark-recap sampling occurred. Note that
the lowest curve is what happens if Si is assumed to be synonymous with. At the other extreme,
the pi estimate approximated according to equation 5 produces realized survivals approaching
observed survival only when abundance nears capacity. Note also that the flat dashed line is both
a horizontal reference for the sampling Si value and what happens when capacity is infinitely

large (i.e., equation 3 or x = 0).
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Figure 5.a.6 — Average realized juvenile survival generated through 200 simulations under
different Si-to-pi adjustment conditions. Note that the black line, x = 0.5 for all juvenile life
stages, tracks about the sampling estimate (black dashed line) used in the original draft LCM
parameterization. Also, treating Si and pi as though they’re one in the same (lowermost orange)
results in simulations within which realized survival is consistently below the field sampling
estimate. Note that simulation year omits a 50-year burn in period. For the blue line, x = 0.75 for
Age-0 parr and x = 1.0 for Age-1+ pre-smolts. For the green line, x = 0.25 for all juvenile life
stages.
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Figure 5.a.7 — Results of Bayesian state-space model used to estimate parr-to-smolt productivity.
Data are shown as filled circles, with approximate 95% confidence intervals based on the
observation error variances. Arrows connect each observation to the corresponding estimated
“true” value (open circle), shown with 95% posterior credible intervals. Because there is no
process error, the true values lie along the fitted curve (posterior mean, with gray envelope
showing the 95% credible interval of the function).
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Section 2e: Habitat Actions and Chinook parr-adult survival

Charlie Paulsen, Paulsen Environmental Research, Ltd.

Tim Fisher, Fisher Fisheries, Ltd.

Abstract

In previous publications using PIT-tagged Chinook salmon parr (Oncorhynchus tshawytscha),
we demonstrated that age 0 parr rearing in selected Snake River basin streams that received a
large number of habitat restoration actions had higher parr-smolt (age 1) survival than juveniles
rearing in streams with relatively few actions. In this analysis, we update the previous work, and
demonstrate how juvenile parr-to—adult (ages 2+)) and smolt-to-adult survival was higher for
juveniles from streams with more habitat actions versus those with fewer actions. Using log-
linear regression models with over 1.14 million tagged parr, the number of habitat actions was
associated with significant increases in survival. Furthermore, these increases were sufficiently
large to potentially be of importance to the co-managers of these stocks. Past habitat actions
likely substantially increased survival, and there may be real potential for carrying out additional
actions that might benefit many of these populations. While we could not demonstrate
mechanistic relationships between habitat actions and survival, we discovered that higher
numbers of actions were associated with larger parr at age, which in turn were associated with

higher survival rates.

Introduction

Snake River spring-summer-run Chinook were listed under the Endangered Species Act (ESA)
by the U.S. National Oceanic and Atmospheric Administration’s National Marine Fisheries

Service (NOAA Fisheries 1992). They have since been the focus of both ESA related litigation
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and numerous management actions designed to increase their survival and abundance (e.g.,
National Wildlife Federation v. National Marine Fisheries Service 2005; Bonneville Power
Administration (BPA 2016). In the most recent biological opinion (BiOp - a proposed
management plan under the ESA) on the U.S. federal Columbia River power system (FCRPS;
NOAA Fisheries 2013), NOAA Fisheries relied in part on improvements in freshwater habitat in
spawning and rearing tributaries to help improve Chinook populations that spawn in tributaries
of the Snake River. They related habitat restoration or remediation actions (“actions”) to
changes in survival using expert opinion, since directed, empirical studies regarding the effects
of habitat restoration on the survival of interior Columbia River stocks had never been carried

out.

Since 2004 over $1.75 billion has been expended by BPA alone on fish habitat restoration and
protection in the Columbia River basin (all species combined; BPA 2016.). Barnas et al. (2015)
state that “[t]he Pacific Northwest now contains one of the highest densities of freshwater
restoration projects in the U.S., and is essentially the largest freshwater restoration effort ever
undertaken on behalf of an endangered species with billions of dollars spent to date.” The
Oregon Watershed Enhancement Board spent over $3 million in 2014 and 2015 in the Columbia
basin (OWEB 2016). NOAA Fisheries’ Pacific Coastal Salmon Recovery Fund has spent $355

million from 2002-2013, much of it in the Columbia basin (NOAA Fisheries 2014).

The BiOp places substantial reliance on improvements in habitat quality/quantity to increase
survival rates for ESA-listed populations. Due to the paucity of empirical field studies of the
survival effects of habitat generally - and habitat improvement actions in particular - on

anadromous salmonid survival, the plans rely on expert panels of knowledgeable specialists to
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infer how habitat actions will change habitat quality. Past work (Paulsen and Fisher 2001; 2005)
made an initial attempt at relating survival to habitat actions for spring-summer Chinook, but
much remains to be done in this area. As Liermann and Roni (2008) noted, “[a]lthough vast
amounts of money are spent on watershed restoration in the Pacific Northwest, there is very little
direct evidence linking restoration actions with increases in salmonid population abundance or
production.” Barnas et al. (2015) state: “To obtain reliable inferences of management action
effectiveness on the scale of a salmon population would require either data that does not
currently exist over that scale, including restoration project success criteria, habitat monitoring,

and spatially explicit habitat assessments, or application to a species with smaller spatial scales.”

Promising intensively monitored watershed studies (IMW's; PNAMP 2016) are underway to help
inform the expert panels and related regional decision-making processes, but definitive results
from these studies are several years out. Furthermore, at present it is unclear how one would
generalize from the six or so IMW's to the other listed populations of stream-type (spring-
summer) Chinook and steelhead in the interior Columbia. The Columbia Habitat Monitoring
Program (CHaMP 2014), initiated in 2011 in nine watersheds, is collecting information on
habitat characteristics thought to be important to anadromous salmon survival in tributaries. For
instance in one CHaMP monitored watershed (Weber et al. 2015) presented promising results of

a study relating beaver dam habitat restoration to juvenile steelhead O. mykiss survival.

While many lab and spawning channel studies relate survival to water temperature, fine
sediments, and other characteristics, to date there have been few attempts to relate field based
measurements of habitat attributes to measures of wild salmonid survival (Crozier and Zabel

2006), the common currency in BiOp life cycle analyses (Liermann and Roni et al. 2008). Roni
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et al. (2014) updated and classified their prior work and found 409 studies that could have a
bearing on predicting salmonid quantities as a function of habitat restoration, very few of which
were undertaken in the Columbia River basin. Of those, only 19 related habitat actions to
survival of salmonids, and only one (Paulsen and Fisher 2005) was located in the Columbia
basin. In fact, only within the past few years have there been any widespread efforts to evaluate
their effectiveness in remediating the habitat degradation they were intended to improve (Roni et

al. 2013).

In light of this, the present analysis attempts to examine the relationship (if any) between
putatively beneficial habitat actions and fish survival. It updates our 2005 analysis referenced
above, and extends it from parr-smolt survival to adulthood (fish returning to Lower Granite dam

as one-ocean jacks or 2+ ocean adults).

The methods used here are broadly similar to those employed before when we investigated
relationships between land use/cover and parr-to-smolt survival (Paulsen and Fisher 2001), and
looking at habitat actions versus parr-smolt survival (Paulsen and Fisher 2005). The major
difference, beyond updating the data we employ, is the focus on long-term survival from age-0
parr to age 2+ jack and adult returns, in addition to from survival to age-1 smolts. Previous work
(Paulsen and Fisher; unpublished) indicated that parr survival did not appear to be density
dependent. Therefore we do not use indexes of parent spawner abundance herein (e.g., density

of redds in spawning stream reaches).
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Parr data

Over two million wild spring-summer Chinook parr (tagged between June and December,
inclusive) have been released in tributaries in the lower Snake (Columbia Basin PIT Tag
Information System (PTAGIS); PSMFC 2016). Of these, we use just over 1.1 million tagged
from 1992-2013, with known size at tagging. We selected 27 spring-summer Chinook
populations that had sufficient numbers of parr tagged between 1992-2013 to support the
analysis. The spawning and rearing locations for each of the 27 populations are shown in Figure
1. All fish were measured for length at tagging, and released into their natal watersheds from
June through December. Size at tagging/release was between 55 and 115 mm. Figure 2 displays
the number of parr tagged by year, while Table 1 shows how parr are distributed among Chinook

populations.
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Figure 1. Snake River spring-summer Chinook populations examined in the analysis.
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Table 1. Number of tagged parr used in the analysis for each population.

Population Number Tagged
American River 13,730
Bear Valley Creek 23,501
Big Creek 59,199
Camas Creek 10,278
Catherine Creek 37,364
Chamberlain Creek 14,258
Crooked Creek 40,534
Crooked River 10,885
East Fork Salmon River 11,696
Grande Ronde River 22,058
Imnaha River 114,010
Johnson Creek 85,349
Lolo Creek 26,534
Lookingglass Creek 30,445
Loon Creek 11,521
Lostine River 37,019
Marsh Creek 115,733
Meadow Creek 15,930
Minam River 31,534
Newsome Creek 28,165
Pahsimeroi River 43,340
Red River 30,827
South Fork Salmon River 117,406
Salmon River 70,757
Secesh River 94,273
Sulphur Creek 9,948
Valley Creek 37,071
Total 1,143,365
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Habitat Actions

Actions taken to improve or restore anadromous fish habitat are defined as the cumulative
number of completed projects “habitat actions” for each population and year. The actions were
carried out over a span of about 30 years by various federal, state, and tribal government
agencies, as well as private and other public entities. The sources of habitat actions were
primarily federal agencies and federal and state sponsored watershed groups (BPA 2016);
Grande Ronde Model Watershed Program 2016; Northwest Power and Conservation Council
2006, USDA Agriculture extension service, US Bureau of Land Management, US Forest
Service, and state government entities (e.g., Oregon Watershed Enhancement Board 2016); The
Conservation Registry 2016). See Fisher (2007) for an earlier detailed accounting of these

actions in the subbasins of interest.

We used our judgment to narrow the list of actions to those which would most likely affect the
survival of juvenile Chinook. These were generally targeted at five commonly perceived
problem areas: restoration of riparian areas and streambanks; controlling livestock grazing and
access; improvement of instream rearing habitat; improvement of stream passage conditions or
expanding access for parr and/or smolts; increasing instream water flow; and abatement of
sources of water quality degradation such as sediment and nonpoint pollution sources. In
calculating the number of actions, we assumed that any action, once taken, would be effective
from the year in which it was implemented through the end of 2013. There are of course
exceptions to this assumption (e.g., riparian plantings) but for consistency and due to the fact that

many projects involved multiple types of restoration, all projects were treated identically.
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We used all actions that were undertaken in years prior to and including 2013 that we could
document and locate with reasonable accuracy on a map. Note that the cumulative total habitat
actions for tagging year 1992 include all actions we could locate that took place prior to and
during 1992 (the earliest project we could locate occurred in 1950). We defined a habitat action
as the suite of individual actions—initiated in the same year and 6" field HUC—under an
implementing agency’s “project” (i.e., the agency identified the actions as one project). Under
this simple definition, an action can consist of more than one activity — instream work, riparian
work, etc. — that was carried out in the same HUC/year. We included only those actions that
took place upstream of the downstream-most PIT tagging site in each population , and were
located within buffers around stream reaches likely to be used by Chinook (Streamnet 2012
spatial dataset; Figure 3). We then used 6th field HUCs from the National Hydrologic Dataset
(US Geological Survey 2011) to split habitat actions that were represented by lines or areas by
HUC. See Figure 4 for an example of the methodology for selecting habitat actions for inclusion

in the analysis.
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Figure 3. Example of spawning and rearing stream reaches, 6™ field HUCs, and habitat action
buffers for the upper Grande Ronde River population. Buffers were placed along stream reaches
identified as spawning and/or juvenile rearing areas and up to 10 km upstream of these reaches.

Tributaries with no identified Chinook use were excluded.
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Figure 4. Example of habitat actions for a portion of the upper Grande Ronde River population.
An action was defined as a suite of activities undertaken under one “project” in one 6" field
HUC in one year. Actions were split by 6™ field HUC and the 1 km buffers. Only actions inside

buffers were used in the analysis.
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R R
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We specifically excluded those actions which took place in areas in the watershed that were far

removed from these reaches or were unlikely to benefit survival in the short term (e.g., remotely

located roads, tributaries not used by Chinook, timber stands, agricultural fields, and livestock

grazing leases; Figure 4). The initial (1992) and cumulative (2013) number of actions shown in

Table 2 of course varies among stocks and over time, with a minimum of zero and a maximum

of 110 actions.
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As we noted in the 2005 paper, this very simple approach, where a “project” is defined as all
actions taking place in a given reach and year, ignores the intensity of restoration efforts. It is
not what we would have chosen given better data on the actions themselves and on pre-action
habitat conditions, but unfortunately these data are not available, especially for projects

undertaken early in the time series.

Unlike our previous analyses, the Lemhi River population was considered but rejected from the
populations in this analysis. The Lemhi has a cumulative 244 habitat actions through 2013, over
twice the second highest population. Many recent actions have focused on reconnecting blocked
tributaries to the mainstem Lemhi River (primarily for adult steelhead access); Chinook may
only receive marginal benefit due to the small size of tributaries and relatively steep channel
gradients. Furthermore, we believe that the Chinook accessible stream reaches may be
“saturated” with habitat improvements, at least for summer rearing habitat, and that recent

projects may have had increasingly diminishing returns.

DRAFT 05/05 PM 12



Table 2. Habitat restoration actions as of 1992 and 2013 by population. Note that the Lemhi
River population was not used in the analysis.

Population

Cumulative no. of

actions in 1992

Cumulative no. of
actions in 2013

American River
Bear Valley Creek
Big Creek

Camas Creek
Catherine Creek
Chamberlain Creek
Crooked Creek
Crooked River

East Fork Salmon River
Grande Ronde River
Imnaha River
Johnson Creek
Lemhi River

Lolo Creek
Lookingglass Creek
Loon Creek

Lostine River

Marsh Creek
Meadow Creek
Minam River
Newsome Creek
Pahsimeroi River
Red River

South Fork Salmon River
Salmon River
Secesh River
Sulphur Creek
Valley Creek
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21
21
7
14
90
3
15
21
99
70
97
26
244
58
9
1
43
16
1
5
14
70
35
92
110
30
0
60
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Methods

As noted in the introduction, there are very few previous studies that have traced any relationship
between fish survival or fitness and habitat actions. In a previous version of this work, we
employed a method know as smoothing splines (Wood 2003) that is very flexible, especially
when treating each tagged parr as an individual observation. However, concerns regarding
pseudo-replication were raised by reviewers, so we have now reverted to much simpler log-linear
models. We investigated three life stages: parr-to-smolt, parr-to-adult, and smolt-to-adult. The

models for all three are similar:

Ln(Si]t)=b0+Yt + P +oM, +¢H; +0A +AL,

Ln(S;,) denotes a survival rate for population i, in year t. b, is the intercept term, while the Y,
terms (one for each year) are year “effect” dummy, index or class variables common across all
fish tagged in a given year. The P, terms are class or index variables for each population.
M, denotes the calendar month of tagging, with an estimated coefficient . H;, are our
estimates of habitat actions for each population and year, with estimated coefficient ¢ . L;,

denotes length at tagging ,(mm) while A is the estimated coefficient for same.

We applied the parr-to-smolt and smolt-to-adult models to release groups (from a given
population and year) to those having at least 100 tagged parr. Because parr-to-adult survival is
quite low (about 0.2%) we confined this model to release groups of at least 500 fish. Despite

these constraints, about a third of the parr-adult and smolt-adult groups had no adult returns.
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Removing them from the samples would clearly bias survival rates upwards, so we added 0.1 to

all adult return counts for every group.

In our earlier work on this topic, we developed a suite of models (e.g. 18 models were used in
Paulsen and Fisher 2005) and used AICc weights to select the best models. In the current
analysis, we instead used year and population index variables and a single model for each life
stage. We did this for simplicity, to focus on habitat actions, and to reduce confounding with
land use patterns. Habitat actions are undertaken primarily in areas with substantial
anthropogenic disturbance, as opposed to wilderness areas. In addition, as funding for habitat
remediation has increased over time, we suspect that most areas that are thought to require
habitat improvements have seen at least some attention. The population and year index variables
allow for a very flexible approach to accounting for background differences in survival while

minimizing confounding with the variables of interest.

Results

Table 3 displays univariate statistics for the variables of interest. Survival from parr tagging to
smolt at Lower Granite averages about 20%, while survival from tagging back to Lower Granite
Dam as jacks or adults is only about 0.2%. Smolt-to-adult survival is higher, of course,
averaging about 1%. Mean length at tagging is about 74 mm, while the number of habitat
actions ranges from zero to 110. The number of year/stock groups decreases as one moves from
parr-smolt survival to parr-adult and smolt-adult survival, since the minimum number of fish in

the various groups increases (from 100 for parr-smolt to 500 for parr-adult), and the number of
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smolts detected at the Snake dams is roughly an order of magnitude smaller than the number of

parr tagged.

Table 3. Univariate statistics for three groupings used in the analysis (parr-to-smolt, parr-to-
adult, and smolt-to-adult survival).
3a. Parr to smolt (N tag groups = 493, N tagged fish = 1,143,365).

Variable Minimum Mean Maximum
Ln(Survival, parr to LGR) -3.24 -1.46 -0.35
Year of tagging 1992.00 2004.05 2013.00
Mean month of tagging 6.07 9.07 11.34
Mean length at tagging, mm  60.25 76.45 104.00
Number of habitat actions 0.00 30.39 110.00

3b. Parr to adult (N tag groups = 430, N tagged fish = 1,121,723).

Variable Minimum Mean Maximum
Ln(Parr-adult survival) -10.75 -7.24 -4.03
Year of tagging 1992.00 2003.22 2013.00
Mean Length at Tagging, mm 60.25 74.23 102.10
Number of habitat actions 0.00 25.33 110.00

3c. Smolt to adult (N tag groups = 365, N tagged fish = 160,329).

Variable Minimum Mean Maximum
Ln(smolt-adult survival) -9.43 -5.46 -2.93
Year of tagging 1992.00 2003.12 2013.00
Mean Length at Tagging, mm 62.36 77.64 101.40
Number of habitat actions 0.00 26.41 110.00

Table 4 shows the correlations among the variables we employed (month of tagging was not
important for the parr-to-adult and smolt-to-adult models). Length at tagging is positively
correlated (p <10%) with survival for the parr-smolt and parr-adult samples, but not for smolt-
adult survival, perhaps because the bypass systems at the Snake dams select for smaller fish

(Hostetter et al. 2015). The number of habitat actions is positively correlated with length at
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tagging for all three samples, and with the two samples that track fish to jack/adult returns at

Lower Granite Dam.

Table 4. Correlations for three fish groupings. Bold numbers are significant at o = 0.10.

4a. Parr-to-smolt survival.

Variable

Ln (parrto  Year of Mean Mean length No. of
LGR tagging  month of at tagging, habitat

survival) tagging mm actions
Ln(Survival, parr to LGR) 1.00 -0.18 0.37 0.64 -0.06
Year of tagging -0.18 1.00 -0.07 -0.24 0.37
Mean month of tagging 0.37 -0.07 1.00 0.39 0.24
Mean length at tagging, mm 0.64 -0.24 0.39 1.00 0.10
Number of habitat actions -0.06 0.37 0.24 0.10 1.00

4bh. Parr-to-adult survival.

Variable Ln (Parr-adult  Yearof  Mean lengthat No. of habitat
survival) tagging tagging, mm actions
Ln(Parr-adult survival) 1.00 0.20 0.25 0.18
Year of tagging 0.20 1.00 -0.08 0.37
Mean length at tagging, mm 0.25 -0.08 1.00 0.19
Number of habitat actions 0.18 0.37 0.19 1.00

4c. Smolt-to-adult survival.

Variable Ln (smolt- Year of  Mean length at No. of habitat
adult survival)  tagging tagging, mm actions
Ln(smolt-adult survival) 1 0.22 0.04 0.22
Year of tagging 0.22 1.00 -0.12 0.37
Mean length at tagging, mm 0.04 -0.12 1.00 0.16
Number of habitat actions 0.22 0.37 0.16 1.00

Table 5 displays the models’ coefficients for month, length, and number of actions, as well as

goodness-of-fit measures. While month of tagging was not important, length and number of

actions were positive and significant at 10% for all three models. R-squares and adjusted r-

squares display reasonably tight fits to the data (the year and stock effects were significant in all
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models). Focusing on the coefficients for habitat actions, we were surprised to see that the
coefficient for the parr-to-smolt model, at 0.0019, was indistinguishable from the estimated value
from Paulsen and Fisher (2005), 0.002. As with the earlier result, the implication is that for a
stock having 100 habitat actions, parr-smolt survival would increase by about 21% (exp(100 *

0.0019)), compared to populations with no actions, all else equal.

Table 5. Estimated coefficients from regression models.

5a. Parr-to-smolt survival.

Variable Estimated Standard P value R-square  Adjusted
Coefficient Error R-square

Mean month of tagging -0.0136 0.0221 0.72 0.80 0.78

Mean length at tagging 0.0278 0.0028 0.0001

No. of habitat actions 0.0019 0.0009 0.03

5b. Parr-to-adult survival.

Variable Estimated Standard P value R-square  Adjusted

Coefficient Error R-square
Mean length at tagging 0.0422 0.0125 0.0007 0.67 0.63
No. of habitat actions 0.0085 0.0046 0.0634

5¢. Smolt-to-adult survival.

Variable Estimated Standard  Pvalue R-square  Adjusted

Coefficient Error R-square
Mean length at tagging 0.0438 0.0128 0.0006 0.61 0.55
No. of habitat actions 0.0096 0.005 0.0543

The parr-to-adult model’s action coefficient, at 0.0085, is both substantially larger and somewhat
less precisely estimated. Taking the point estimate at face value, it implies that a population
with 100 actions would experience a 230% increase in parr-to-adult survival (exp(100*0.0085)).

This raises an obvious question: assuming that both the parr-to-smolt and smolt-to-adult results
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are a reasonable approximation of reality, why should the increase in survival to adult be ten
times greater than the increase in parr-to-smolt survival? Absent direct estimates of survival in
the estuary and ocean, we can only offer informed speculation. As seen in Table 4, for all three
samples an increase in habitat actions is associated with an increase in parr size at tagging. We
know from other research (Muir et al. 2006) that larger smolts are more likely to return as adults,
in part because they are less susceptible to predation. If areas with more actions can grow parr
faster than those with fewer actions, it may be that those parr, in addition to surviving at higher

rates to the smolt stage, may be less likely to be preyed upon in the estuary and ocean.

The smolt-to-adult results (Table 5c¢) are very similar to the parr-to-adult results just described.
The difference, of course, is that we know that the smolt sample was alive at the time of
detection at the Snake dams. The tradeoff is the much smaller sample size. As with the parr-to-

adult results, these indicate a larger effect of habitat actions in a later life stage.

As a back-check on the statistical results, we show how actual parr-to-adult survival rates, not
predictions, changed over time for six stocks (Figure 5): the three with the lowest number of
actions, and the three with the highest number. As one can see, from 1992 to about 2005, the
two stock groups had similar parr-adult survival, but from 2007 to 2013 the high-action group
survived at roughly double the rate of the low-action group. While one should not read too much
into this simple display of data it does suggest that the actual data — no modeling involved —
supports our overall conclusions. One additional point may be noteworthy: the three populations
with the fewest actions are all in designated wilderness areas, while those with the highest

number of actions are in areas with high land-use impacts.
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Figure 5. Actual parr-adult survival for 3 stocks with lowest number of actions (Sulphur Creek,
Meadow Creek, and Loon Creek) and 3 stocks with highest number of actions (Imnaha River,
East Fork Salmon River, and Salmon River). Years with no tagging have no observations.
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Discussion

The results described here should be encouraging for fisheries managers and funding agencies,
which have heretofore relied on the expert judgment of specialists. It appears that, for the
populations we analyzed, habitat actions may truly increase parr-adult survival. There also
appears to be a crude but plausible mechanism for the results: more actions are associated with

greater size at age, and hence higher survival to adult.

These results should be interpreted with caution, as the data are obviously not derived from
randomized experiments. The habitat actions were undertaken as opportunities in the spawning
and rearing streams of these stocks arose over more than two decades, and the location, relative

extent, and type of action are dependent on the judgment of numerous specialists. At the time
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the actions were undertaken, there were no parallel plans to evaluate their effects on salmonid
survival. In fact, only within the past few years has there been any widespread efforts to
evaluate their effectiveness in remediating the habitat degradation they were intended to
improve. While it would be useful to have estimates of habitat quality pre- and post-actions, the
necessary data simply do not exist. Programmatic monitoring of habitat actions has yet to be
implemented at a basin-wide scale, and has only recently been proposed (Roni et al. 2013).
Habitat actions cannot be emplaced everywhere these stocks spawn, especially in designated
wilderness areas, which comprise approximately one fifth of the drainage area surrounding
spawning and rearing areas. In addition, as with the Lemhi, some subbasins may already have
had most or all of the beneficial actions that they can usefully support, short of major changes in
land use. Finally, of course, correlation should not be confused with causation, and it is possible,

albeit improbable, that the results are due to simple random variation.

Since stocks with many actions seem to have higher juvenile survival than those with few, one
may wonder if this is reflected in adult measures of stock performance (e.qg., adult recruits per
spawner, R/S). We have investigated this informally (Paulsen and Fisher, unpublished), and
could find little or no trace of habitat action influence on adult population trends or R/S. We
suspect that a combination of density dependence, imprecise estimates of adult age-at-return, and
imprecise expansion from redds to spawners, may contribute to our inability to detect similar
associations using adult data. The apparent importance of density dependence for adult R/S
models suggests that future actions might be aimed at increasing the capacity of existing habitat
and, where feasible, opening new habitat via barrier removal or tributary reconnections, as in the

Lemhi.
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The combined results of this analysis and that in Paulsen and Fisher 2005 may also be useful in
designing the IMWSs noted previously. There is a reasonable certainty that large numbers of
habitat actions result in both higher parr-adult survival, and furthermore the magnitude of these
survival changes is estimable. The survival changes estimated in Paulsen and Fisher 2005 were
about a 20% increase in parr-to-smolt survival for stocks that received a large number of habitat
actions as compared to stocks that did not receive any actions. The projected changes in survival
suggest that as one moves from zero actions to the maximum of 110 in this sample, survival to
adult roughly doubles. We suspect, but cannot prove, that the much larger increase in survival to
adulthood is associated with the production of larger parr, and hence larger smolts, which likely
survive at higher rates during outmigration through the dams, reservoirs, and in the early marine
environment. In addition, even though we have excluded the Lemhi from the current analysis,
the average number of habitat actions in these data is about 33 (Table 2), almost double that of

the actions in Paulsen and Fisher (2005), which used data to 2002.

Close monitoring of parr-adult survival for treated watersheds, and tagging sufficient parr to
detect changes in marine survival that may be caused by habitat improvements, may be
warranted if the results of this analysis generalize to other locations and species. We suggest two
potential geographic extensions, to the Upper Columbia and John Day Basins, both of which

have extensive habitat actions and juvenile salmonid tagging programs.

Potential application of these results into life cycle models (LCMs) can be viewed as a two-part
question. First, for population that have had large numbers of past actions, the regression models
predict that parr-smolt and smolt-adult survival has increased over time as actions were

implemented. This would likely need to be accounted for in calibrating LCMs to estimates of
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past years’ spawning escapement, juvenile production, and life stage survival rates. If an LCM is
employed to predict future population viability for a stock that is scheduled to have additional
future habitat actions, one could use the results to adjust projected life stage survival rates, and

incorporate the changes into predictions of spawner abundance, extinction probabilities, etc.

In conclusion, there was a strong association between survival and the number and type of
habitat actions undertaken for these stocks. This result is both useful in and of itself, and for
those who may be planning small scale experimental treatment and control studies. Furthermore,
examination of the results strongly suggests not only that habitat actions really do “keep on
giving” after parr emigrate from their natal streams, but also that studies which focus solely on
the smaller-scale effects of habitat restoration on freshwater rearing may overlook an important

benefit of investments in the restoration of anadromous salmon freshwater habitats.
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CHAPTER 3: ESTUARY/OCEAN SURVIVAL

3.a Ocean Survival

Brian J. Burke (NOAA Fisheries, NWFSC), Lisa Crozier (NOAA Fisheries, NWFSC), Jeff
Jorgensen (NOAA Fisheries, NWFSC), Tom Cooney (NOAA Fisheries, NWFSC), and Rich
Zabel (NOAA Fisheries, NWFSC)

Intro to using PIT data (including what we used before)

Relative to the freshwater life stage, modeling the ocean life stage has received less attention in
many salmon life cycle models. This chapter describes an effort to put a bit more focus on this
important life stage by first assembling a dataset that specifically addresses marine survival. We
also chose to completely revise the analytical approach, taking advantage of recent data sources
that were not available during earlier efforts. Much of the initial efforts to revise our approach
involved evaluations and data explorations that won’t be directly useful in LCMs, but rather
helped us make important choices on which data sets to include or exclude. Data, methods, and
model results described here are therefore preliminary and, to a limited extent, still in flux.

Switching from SAR to PIT tag data

In previous efforts (Zabel et al. 2013), the ocean component of the life cycle was evaluated using
SAR data as the response variable, a value which was often calculated from juvenile counts at
Lower Granite Dam and resulting adult counts at Lower Granite Dam. In these models, SAR
had to be adjusted to account for downstream and upstream in-river survival and age
composition, each of which has uncertainty associated with them that was difficult to transfer to
the adjusted SAR values. Therefore, resulting estimates of ocean survival were often artificially
correlated with in-river survival. This approach was taken out of necessity, as no other data were
available to directly represent the ocean component of salmon life cycle.

More recently, the time series of ocean survival based on PIT tag data is long enough that we can
more directly and more accurately model this component of the salmonid life cycle. Rather than
estimating SAR from Lower Granite Dam back to Lower Granite Dam (and then backing out in-
river survival), we can isolate fish detected at Bonneville Dam as juveniles and estimate their
survival back to Bonneville Dam. Therefore, no in-river survival adjustments are necessary and
resulting estimates of ocean survival are independent of estimates of downstream and upstream
in-river survival.

Data sources

PIT-tag data were assembled by Columbia Basin Research (CBR) via PTAGIS for outmigration
years 2000 through 2013. These data go through a rigorous set of algorithms to determine
whether data are from juveniles or adults and from transported or in-river migrants.
Additionally, data files include 1) last detection date at Bonneville Dam as juveniles, 2) rear type



(hatchery or wild), and 3) whether fish survived back to the river. For survivors, the file also
includes the number of years fish spent in the ocean and the date and location of the first adult
detection at one of the mainstem Columbia River dams. Updates to these files will be posted
each year on the CBR website (http://www.cbr.washington.edu/).

We obtained covariate data from a variety of sources (Table 1). Variables represent large-scale
oceanographic patterns as well as regional and local physical and biological metrics. Although
not all variables will have a direct mechanistic relationship with salmon survival, these variables
occupy many locations along the continuum of being easily accessible vs. being mechanistic.

Table 1. Covariate data and sources.

Variable Description Years Available  URL / Source

CRflow.spr ASeasonal Columbia River flow as 1978-present http://waterservices.usgs.gov/rest/DV-

CRflow.sum measured near Bonneville Dam Service.html

CRtemp.spr ASeasonal Columbia River temperatures ~ 1997-present http://waterservices.usgs.gov/rest/DV-

CRtemp.sum at Bonneville Dam Service.html

cui.win BSeasonal coastal upwelling index 1946-present http://www.pfeg.noaa.gov/products/PFEL

cui.spr Data/upwell/monthly/upanoms.mon

cui.sum

cui.aut

mei.win BSeasonal Multivariate ENSO Index 1950-present http://www.esrl.noaa.gov/psd/enso/mei/tab

mei.spr le.html

mei.sum

mei.aut

npgo.win BSeasonal North Pacific Gyre 1950-present http://www.o3d.org/npgo/npgo.php

npgo.spr Oscillation

npgo.sum

npgo.aut

npi.win BSeasonal North Pacific Index (index of ~ 1899-present https://climatedataguide.ucar.edu/sites/defa

npi.spr Aleutian Low Pressure) ult/files/npindex_monthly.txt

npi.sum

npi.aut

oni.win BSeasonal Oceanic Nifio Index 1950-present http://www.cpc.ncep.noaa.gov/products/an

oni.spr alysis_monitoring/ensostuff/ensoyears.sht

oni.sum ml

oni.aut

pdo.win BSeasonal Pacific Decadal Oscillation 1900-present http://jisao.washington.edu/pdo/PDO latest

pdo.spr

pdo.sum

pdo.aut

sst.win BSeasonal coastal sea surface 1991-present http://www.ndbc.noaa.gov/maps/nw_strait

sst.spr temperature, averaged over buoys s_sound_hist.shtml

sst.sum (LAPW1, 46211, 46041, 46029, 46050)

sst.aut

ersst.DJF (win) BExtended reconstructed seasonal sea 1854-present https://www.ncdc.noaa.gov/data-

ersst MAM (spr)  surface temperature, Washington coast access/marineocean-data/extended-

ersst.JJA (sum) reconstructed-sea-surface-temperature-

ersst.SON (aut) ersst-v3b accessed via http://cci-
reanalyzer.org/Reanalysis monthly/tseries.
php (using E1: 237.1335, E2: 233.9523, N:
48.50611, S: 46.05009)

sstarc.win BSeasonal sea surface temperature from  1900-2016 http://www.ndbc.noaa.gov/maps/nw_strait

sstarc.spr Johnstone and Mantua (2014) s_sound_hist.shtml

sstarc.sum

sstarc.aut

transport.win
transport.spr
transport.sum

BSeasonal Sverdrup transport, positive
values indicate northward transport

1967-present

http://upwell.pfeg.noaa.gov/products/PFEL
/modeled/indices/transports/transports.html




transport.aut

UppTempWin® Mean temperature in the upper 20m at 1998-present www.nwfsc.noaa.gov/oceanconditions
station NHOS from Nov-May

UppTempSum® Mean temperature in the upper 20m at 1998-present www.nwfsc.noaa.gov/oceanconditions
station NHOS from May-Sep

DeepTemp® Mean temperature at 50m at station 1998-present www.nwfsc.noaa.gov/oceanconditions
NHO05 from May-Sep

DeepSalinity© Mean salinity at 50m at station NHO5 1998-present www.nwfsc.noaa.gov/oceanconditions
from May-Sep

CopRichness® Copepod species richness at station 1998-present www.nwfsc.noaa.gov/oceanconditions
NHO05

NCopBiomass© Biomass of northern species of 1998-present www.nwfsc.noaa.gov/oceanconditions
copepods at station NHOS

SCopBiomass® Biomass of southern species of 1998-present www.nwfsc.noaa.gov/oceanconditions
copepods at station NHOS

BioTrans® Biomass of southern species of 1998-present www.nwfsc.noaa.gov/oceanconditions
copepods at station NHOS

IchthyoBio® Biomass of ichthyoplankton collected 1998-present www.nwfsc.noaa.gov/oceanconditions
across the Newport Hydrographic Line
(Jan-Mar)

IchthyoComp®© Species composition of ichthyoplankton  1998-present www.nwfsc.noaa.gov/oceanconditions

collected across the Newport
Hydrographic Line (Jan-Mar)

PC1 First Principal Component of NWFSC 1998-present www.nwfsc.noaa.gov/oceanconditions
variables

IGF Insulin-like Growth Factor 1 1998-present Brian Beckman, pers. comm.

CRflow7 Derived variables. Computed for each NA See above

CRtemp7 fish individually as the mean value of

SST7 each variable over a 7 day period

CUuI7 starting the day the fish passed

Bonneville Dam

A Seasonal Indices represent the average of daily values, spr=Mar-May, sum=Jun-Aug
B Seasonal Indices represent the average of daily values, win=Dec-Feb, spr=Mar-May, sum=Jun-Aug, aut=Sep-Nov
C NWEFSC sampling, summarized in PC1 and PC2

Sample sizes

The vast majority of PIT tagged fish in the last 20 years were from the Snake River Basin
(>75%). As we develop these new methods for representing the ocean phase of the salmonid life
cycle, we chose to focus on Snake River spring/summer Chinook because of their importance to
the region, the advanced stage of the existing life cycle model for this group, and the large data
set available. Once the main methods are worked out, we will expand the modeling effort to
other stocks (e.g. Upper Columbia River spring Chinook).

An average of 82.5 thousand PIT tagged juvenile Snake River spring/summer Chinook were
detected each year passing Bonneville Dam from 2000 through 2013. However, less than 3% of
these fish were wild fish migrating in-river, the target group for our life cycle modeling efforts.
The vast majority of PIT tagged Snake River Chinook were transported hatchery fish (Figure 1).
Below, we evaluate whether we can include hatchery fish or transported fish in the model to
increase sample size, with some sort of offset to account for differences among groups. From
these data explorations, we concluded that using only the wild, in-river fish would be the most
appropriate data set, despite the much lower sample size. This resulted in a total of 25,167 fish
over 14 years.
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Figure 1. Frequency of PIT tagged fish per year, by rear type and migration route.

Hatchery fish

Given that over 90% of the PIT tagged juveniles detected at Bonneville Dam are hatchery fish, it
would be worth including them in any analysis — if they survive at similar rates and respond to
the environment similarly to wild fish. Unfortunately, a simple comparison between hatchery
and wild fish survival (for in-river fish only) shows that wild fish can survive at rates anywhere
from 0.5 to 2.5 times those of hatchery fish (Figure 2). The interannual variability in this
relationship makes it difficult to account for it in models without adding a lot of model
complexity.
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Figure 2. Survival ratio between wild and hatchery fish (values above 1 indicate wild fish
survived at higher rates). Data for in-river fish only.

Another complication that comes with including hatchery fish in an analysis is the presence of
minijacks. These are fish that migrate to the ocean (or, at least below Bonneville Dam), but
migrate back upstream later that same year (as opposed to jacks, which spend one winter in the
ocean). For the most part, wild fish do not exhibit this strategy, partly because maturation rates
are determined by size and growth rate and wild fish are smaller than hatchery fish when
entering the ocean.

When estimating and modeling ocean survival, we can either include minijacks or not. If we
exclude them (delete the known minijacks, which are all survivors, from the data set), the
presence of fish in a data set that would have been minijacks, but died prior to returning to the
river will be lumped in with the rest of the mortalities (i.e., jacks and adults) and included in the
denominator of survival rates, biasing the ocean survival rate downward. If we include
minijacks, we can account for these fish with an additional parameter (representing the portion of
the entire first ocean year survival that is experienced during the first couple months), but this
would have to be assumed, as there are no data to fit against. Moreover, modeling the minijack
response to ocean conditions can be difficult, because they experience such a short period in the
ocean.

Transported fish

Similar to hatchery fish, if transported fish have a constant survival relationship with in-river
fish, we can include them in the analysis, accounting for them with a model offset. The ratio of
transport to in-river survival has been studied extensively (Anderson et al. 2012). As found in



other analyses, this ratio is not constant in these data (Figure 3) and complicate the addition of
transported fish into ocean survival models.
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Figure 3. Survival ratio between transported and in-river fish (wild fish only).
Model structure

Using PIT tag data allows the use of individual fish in our analysis. For each fish detected at
Bonneville Dam as a juvenile, we know the date it passed Bonneville Dam, the environmental
conditions at that time, and whether it returned to the dam as an adult; detection efficiency in the
adult ladders averages 98.7%, with a minimum of 95.2% in 2005, (Crozier et al. 2016).

We used a logistic regression model to determine the effect of environmental covariates on the
probability an individual would survive (binomial response). As previous work has shown the
importance of migration timing (Scheuerell et al. 2009, Holsman et al. 2012), we included Julian
date at Bonneville Dam as a covariate. Moreover, the importance of timing can shift from year
to year. We therefore allowed the effect of Julian date in the model to vary among years by
treating it as a random effect (each year’s coefficient is assumed to come from a common normal
distribution of potential coefficient values).

Based on some support for a nonlinear effect of date, we tested a quadratic Julian date term. As
the random component of mixed-effects models must be specified prior to model selection on the
fixed effects (Zuur et al. 2009), we initially compared models with a linear random effect of date
to models with a quadratic random effect. Over several model designs, the linear random effect
of Julian date was better supported by the data. However, during initial model selection
exercises, the squared term for Julian date was supported in the fixed-effects component of the



model. Therefore, we chose a null model with a quadratic effect in the fixed-effects term and a
linear effect in the random effects term:

logit(survival)~ 1 + julian + julian? + (1 + julian | year).

A model with this structure would allow the effect of Julian date to be quadratic, with each year
having a slightly different shape (Figure 4).
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Figure 4. Effect of Julian date in the null model.

Other covariates were entered into competing models and we compared all subsets of covariates
from Table 1, with a maximum of two parameters (in addition to the Julian date parameters) in
any one model. Due to the large number of competing models, we refined the list of potential
covariates by comparing univariate models to the null model. Only variables that resulted in at
least a decrease of one AICc unit from the null model were considered for further analyses
(Figure 5).
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Figure 5. Univariate model comparison used as an initial covariate filter. Variables that did not
improve the AICc by more than one unit over the null model are not shown and were not

included in further analyses. Blue bars represent data coming from the NWFSC stoplight chart
(www.nwifsc.noaa.gov/oceanconditions).

Many of the covariates tested have a substantial level of cross-correlation (Figure 6). We
therefore excluded any two variables with an absolute value of the correlation coefficient greater
than 0.7 from being in the same model.
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Figure 6. Correlation matrix (Pearson’s correlation coefficient) among potential covariates.

Results for Snake data

Based on univariate models (the null model containing Julian date plus one other variable), 29
variables resulted in an improvement in the AICc of at least one unit over the null model (Figure
5). Eleven of the top univariate models represented a variable from the NWFSC stoplight chart
(www.nwfsc.noaa.gov/oceanconditions), including the top univariate model.

We performed model selection across 358 models with a maximum of two additional variables to
the null model. Although several potential covariates showed support from the data, the first
principal component of the NWFSC stoplight chart had the highest mean importance, followed
closely by sea surface temperature ‘arc’ in winter, winter ichthyoplankton biomass, and coastal
upwelling in spring (Figure 7).

The best model included coastal upwelling in spring and the NWFSC stoplight chart PC1 (Table
2). This model fit the survival data quite well (Figure 8) and had relatively stable parameter



estimates (Figure 9). Similarly good fits were obtained from many of the top models (Figure
10).
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Figure 7. Mean variable importance scores (sum of the AICc weight of models containing this

variable divided by the number of models containing the variable).

Table 2. Model selection table and standardized coefficients (only showing the top 6 models).

- - cui ersst ichthyo pdo S.cop. SST SSTarc Delta .
Model Intercept jul lian® PC1 f Al ht
odel Intercept julian  julian spr - JJIA bio ¢ spr bio. sum  win d ce AlCc wee
1 -3.8 -0.28 -0.07 0.34 -0.61 8 5495.72 0 0.38
2 -3.8 -0.22  -0.08 -0.36 -0.59 8 5496.58 0.87 0.25
3 -3.78 -0.25  -0.07 0.44 -0.44 8 5497.36 1.64 0.17
4 -3.79 -0.25 -0.08 0.4 -0.52 8 5498.03 2.31 0.12
5 -3.78 -0.23  -0.07 0.34 -0.47 8 5498.58 2.87 0.09
6 -3.8 -0.24  -0.07 -0.31 -0.52 8 5498.93 3.21 0.07
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Figure 10. Model fit from the top 6 models.

Interestingly, a disproportionate share of the model support went to models that contained both a
winter variable (before salmon out-migrated) and a spring or summer variable. Excluding some
of the stoplight chart variables, many of which extend into the autumn, there were 66 models that
had both a winter variable and a spring/summer variable, making up slightly less than 19% of the
models. However, these models held over 31% of the AICc weight. This suggests that salmon
survival is a complex result of environmental conditions across multiple seasons. Note, the top
model does not technically qualify as having one winter and one spring or summer variable
because PC1 extends across seasons and therefore was not included in this little analysis.
However, it also supports (inherently) the idea of including information from multiple seasons.
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Complications

Switching to PIT tag data comes with some complexities and new limitations. First, we can only
use data from populations that have been PIT tagged in sufficient numbers. Many populations in
the Snake River Basin have been PIT tagged since the late 1990s, but this is less true for the
Upper Columbia River. Additionally, the various subbasins will have different amount of
tagging effort, so distinct populations may be suboptimally weighted in the data set.

Second, the length of the time series is much shorter for PIT tag data than it is for SAR
estimates. The main adult PIT tag detectors at Bonneville Dam were installed in 1998 and did
not cover all adult routes until 2002 (http://www.ptagis.org/sites/mrr-site-metadata). For
analyses here, we started all time series of PIT tag data in outmigration year 2000 (most Chinook
return after 2 ocean years, which would be 2002). Using only cohorts that have completely
returned to the river by 2016, this leaves 2000 to 2013, or 14 years of data. This is a relatively
short period compared to the 35 years used in the previous analysis for Snake River Chinook
(Zabel et al. 2013).

Discussion and future efforts

Even with the reduced sample size when excluding hatchery and transported fish, we were able
to effectively model recent ocean survival of Snake River spring and summer Chinook salmon.
Several of the competing models produced good fits and environmental data from multiple
sources contributed significantly to these results. Given the early stage of these efforts, we are
encouraged by results to date.

Additional populations

As we develop these methods further, we will be applying them to a second data set, in this case
from the Upper Columbia River. A well-developed life cycle model for the Wenatchee Basin is
currently being revised (see Chapter 9). Although smaller than the Snake River data set, this
data set contains PIT tag data for about 67 thousand spring Chinook salmon over 14 years and
should allow us to refine the ocean component of this life cycle model. The approach taken will
be similar to one described here, though customization will result in some details differing.

Age structure

Faster-growing fish tend to return at younger ages, which is even evident in these PIT tag data
(Figure 11). Smaller fish may spend more time in the ocean to increase size and gain mass for
spawning, which can influence their survival. Therefore, age structure and ocean survival are
explicitly intertwined. Age structure varies among years (Figure 12), although fish spending two
years in the ocean dominate in almost every year.

A model structure that either predicts age structure as well as survival, or accounts for age
structure while predicting survival would be a large improvement over the current method (see
Chapter 7). However, due to their inter-dependent nature, it is very difficult to model age
structure and survival together.

13



[o]
o
s |
o~
o]
c 8
C_) 1
T o g i
5 © i
15 i =
5 I i
ﬁ 1
£
) : =
$ 8- |
1
' T
r 1
| 1
1
1
!
I
o _| &
w O
T T T T T
0 1 2 3 4
Salt Years

Figure 11. Juvenile salmon size distribution for fish returning after different number of years in
the ocean (salt years).

Sample size
157 7 50 15 7 1 23 34 89 73 80 8 36 37
1 | | 1 | 1 1 | 1 | | 1 | ]
g - — jack
two_ocean
three_ocear
© |
o
© |
[ = o
S
=
o
Q
o
o < |
o
o /\
o
o | —H_//\\_—J
o

I T T T T T T T T T T T T 1
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Out-year

Figure 12. Age distribution for wild, in-river spring Chinook salmon. Sample size shown at the
top.

Scenarios

One of the goals of LCMs is to have a quantitative tool to explore the effect of future climate
change scenarios as well as potential management decisions. There are several ways to
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implement the evaluation of future scenarios. For example, a simple method would be to
subsample observed survival rates, replicating a series of low (but observed) survival years to
represent poor future ocean conditions or a series of high survival years to represent good ocean
conditions. By skipping the environmental drivers, this method becomes easily implemented,
but perhaps not very useful mechanistically.

More complex methods would involve using fitted models like those described here to forecast
survival under estimated future climate scenarios. This approach depends on having future
scenarios of the particular covariates that were important in the survival model (coastal
upwelling and PC1 in this case). In this latter mode, the design of the model can have a large
effect on how scenarios are created. For example, the effect of Julian date varied each year (by
the design of the model). As scenarios are developed, we could subsample (with replacement)
observed years, such that the effect of Julian date is pulled directly from one of the 14 years
modeled, or we could create new year types, based on model-averaged coefficients. The impact
of these decisions on model results are unknown and will have to be evaluated.
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CHAPTER 4: HYDRO MODELING

4.a Integrated Population Model of the Grande Ronde Basin

Robert B Lessard (Columbia River Inter-Tribal Fish Commission)

Introduction

This analysis focuses on spring/summer Chinook salmon in the Grande Ronde basin. The Snake
River spring/summer chinook ESU contains several major population aggregates in Idaho,
Washington and Oregon. The Grande Ronde/Imnaha Major Population Group (MPG) consists of
several populations migrating into the Snake river. The Upper Grande Ronde (GR), Catherine
Creek (CC), Lostine/Wallowa (LOS), Minam (MIN), Wenaha (WEN), and Imnaha (IMN) are six
populations making up the MPG, and are the focus of this analysis. The populations occupy a
range of habitats of varying complexities and human land use, and vary in terms of their
population sizes and productivities. Watersheds vary from highly disturbed to being
predominantly contained in wilderness areas. Considerable habitat restoration efforts are under

way in the more disturbed watersheds, and many have active hatchery supplementation programs.

This life cycle modeling analysis is aimed at providing perspective and guidance to
restoration planning. Populations examined in this analysis all have unique challenges in
freshwater, and yet all populations share common juvenile migration and ocean survival
conditions. Recovery planning at the MPG scale can’t necessarily meet the unique needs of each
population, but planning objectives can be sensitive to the unique responses that each population
may have to broad scale recovery actions. In particular, hydro passage actions aimed at increasing
mainstem juvenile survival needs to account for the relative responses of individual watersheds,
and the differing potential for habitats to support additional spawners. By accounting for the
individual freshwater production dynamics of each population, and examining how each
population responds to mainstem hydro actions, planners can gauge the relative benefits of all
types of recovery actions, and also gauge what levels of habitat actions need to be implemented to

support recovery actions implemented via hydro operations.
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By accounting for variability both in freshwater dynamics as well as in mainstem and
ocean dynamics, a complete life cycle analysis can provide a probabilistic sense of recovery
goals. Ocean survival probabilities have been associated with indices of ocean conditions such as
the Pacific Decadal Oscillation (PDO) (Mantua et al., 1997), upwelling indices indicative of
primary production, and sea surface temperature (Petrosky and Schaller 2010). Additionally,
evidence has emerged that environmental conditions in the river affect the physical condition of
out-migrating fish, and influence the rate of mortality after the fish enter the ocean (Petrosky et al.
2001; Budy et al. 2002). Petrosky and Schaller (2010) showed that early ocean survival varied
with PDO, upwelling, and a variable describing juvenile interaction with powerhouses. The study
found that the sum of the spill-adjusted powerhouse contact values (NPH) was negatively

correlated with survival below BON and during the first year in the ocean.

In this analysis, survival is partitioned through the hydrosystem into transported and
untransported life histories. Survival differences both during these two routes of passage, as well
as survival differences that occur upon ocean entry are accounted for. The analysis is aimed at
providing a quantitative assessment of the relative life cycle production benefits of improving
survival conditions in the spawning and rearing versus improving survival conditions during
juvenile outmigration through the mainstem. It applies population specific in-river harvest using
US v OR Technical Advisory Committee (TAC) estimates of Zone 6 and commercial harvest, and
includes brood stock removals and upstream conversion rates. The analysis provides a
comparison of the potential benefits of managing freshwater spawning and rearing habitat for
increased productivity and capacity, versus the potential benefit of managing the hydrosystem,
and evaluates long-term projected return abundances. It uses estimated productivity and capacity
rates in freshwater, and predicts the magnitudes of the effects of hydrosystem and environmental
conditions on in-river route of passage and ocean survivals. To represent future unobserved
environmental conditions, simulated time series of in-river and ocean variables are used that are
either drawn randomly from historical values, or simulated to represent conditions similar to

historical or expected future conditions.



Data

There are three types of data used in this analysis: 1. forcing variables used to predict
survival (environmental and anthropogenic data), 2. empirical abundances (juvenile and adult)
used for comparison with predicted abundances, and 3. survival rates used to compare to the

predicted trends in survival.

The Northwest Fisheries Science Center of the National Marine Fisheries Service (NMFES)
publishes salmon population summaries annually (SPS!). These summaries include annual
estimates of the number of spawners, the age compositions of spawners, the proportion of
hatchery fish on spawning grounds, and harvest rates. The annual record can be used to account
for the number of fish of each age from each spawning year (or brood year) that later return to
spawn, including those that were caught in fisheries or collected for hatchery brood stock. The
full account of this is called a brood table and is used in this analysis for each of the six listed
populations of the MPG. The time period was selected such that all populations were monitored
and environmental data were available. Thus, early years where not all populations were
monitored were not included. Adult returns were available up until 2013, meaning that three year
old returns from brood year 2010 were accounted for, along with four year old returns from 2009,
and five year olds from 2008. This results in a multi-population brood table spanning the brood
years 1964 to 2008, where 2008 is the most recent brood year where all ages of adults have been
observed on spawning grounds. Conversion rates, Zone 6 harvest estimates, and commercial
harvest estimates from TAC Biological Assessment Tables were used to reconstruct the number of
adults that would have been present at the mouth of the Columbia, based on the number that were
observed on the spawning grounds. Those numbers are used to compare to the predicted returns
to the mouth. Tributary harvest rates and collection for brood stock, which are also used in this

back-calculation, were obtained from ODFW population reconstruction tables.

One facet of this analysis is focussed on the effects of environmental conditions in the

Thttps://www.webapps.nwfsc.noaa.gov/apex/f?p=261:home:0



Columbia River during smolt outmigration, and environmental conditions in the ocean when
smolts enter their ocean residency stage. A powerhouse contact rate was derived from PIT tag
data (PITPH) to predict in-river and ocean survival (Appendix J, McCann et al., 2015). The
PITPH index uses the PIT tag detection rate and an estimated fish guidance efficiency to estimate
the fraction of fish passing through the powerhouse (bypass and turbine routes combined). This is
predicated on the fact that the actual number passing through the powerhouse is the number of
bypass detections divided by the guidance efficiency. PITPH implicitly captures traditional spill
and surface passage. The index is the sum of the fractions passing through the powerhouses of all

projects combined.

An index of water travel time (WTT) was used to predict in-river survival. WTT was
obtained by dividing the total volume of reservoirs by the flow rate, with adjustments in McNary
pool to account for Columbia River versus Snake River flows (Tuomikosky et al., 2012). To
predict the fraction of juveniles that are transported, an index (PTRANS) is used that was reported
in the 2014 CSS annual report. For early ocean survival, the PDO in May and the upwelling index
(UPW) in April are used, and additionally, a mechanism is implemented by which the ocean
survival of in-river migrants is also affected by PITPH. The time series of environmental
conditions is shown in Figure 1. PITPH appears to generally reflect the number of powerhouses in
place and the proportion of total flow that has occurred as spill at each project over the time
series. This time series encompasses a period of time when several changes took place in the
hydrosystem. Fewer powerhouses were operational in the hydrosystem until the mid 1970’s, so
PITPH was lower. The transmission capabilities were limited prior to the construction of the DC
and AC Intertie transmission lines, which resulted in a considerable amount of uncontrolled spill.
As a consequence of this construction, the occurrence of uncontrolled spill declined. Full
transportation as a mitigation measure was implemented for several years and no spill occurred at
the transport projects. In addition, several planned spill programs were in place, including the
Spill Memorandum of Agreement prior to the 1992 Biological Opinion. Subsequent increases in

spill levels occurred through the series of Biological Opinions until the 2008 Biological Opinion.



The most significant changes in spill came after 2005, when a court opinion granted the summer
spill portion of the National Wildlife Federation’s request for injunctive relief to provide spill to

gas cap limits at Lower Granite, Little Goose, Lower Monumental, and McNary dams.

Juvenile data (Favrot 20122) are available for four of the six populations in the MPG:
Catherine Creek, the Grande Ronde River, the Lostine/Wallowa and the Minam river. Data are not
available for each year for each population, but the range was between 1992 to 2009, and some

missing years are excluded from model fitting procedures.

SAR and in-river survival rates Sp were obtained from PIT tag data for migration years
1994 to 2012. Prior to 1992, SARs were obtained by dividing the returns to the mouth of the
Columbia River by number of smolts at the upper dam (Petrosky and Schaller, 2010). For 1980
and prior migration years, data from Williams et al. (2001) were used for in-river survival rates.
1981-1984 in-river survival rates are from Marmorek and Peters (1998). Yearly variance
estimates for SARs (0% 4 r) Were derived by assuming a normal distribution in bootstrapped
estimates and using the 90% confidence numbers to calculate a variance based on the upper and
lower 90% values being at the value of the bootstrapped SAR +1.6450¢4r . Yearly variance

estimates agﬁ , for in-river survival were derived the same way.
Methods

Using maximum likelihood estimation, parameter estimates are obtained that best fit
trends in abundance and survival. Additionally, the result of statistical fitting is used as the basis
for predicting abundance trends under alternative potential changes to both tributary and
mainstem survival. An Alternative Treatment Evaluation (ATE) is used to compare the potential
relative benefit of a level of improvement to juvenile passage survival to a level of improvement in
freshwater spawning and rearing productivity. The ATE method factors the uncertainty in
parameter estimates into predictions, and therefore predicts the range of possible outcomes from

each alternative treatment level.

Zhttps://pisces.bpa.gov/release/documents/documentviewer.aspx ?doc=P128637
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Figure 1: PITPH (upper panel) WTT and Transport (middle panel) and ocean environmental condi-
tions (lower panel) used in model predictions.



Models

Typically, freshwater salmonid production is described in terms of spawners, eggs, fry,
parr and smolts. Ricker (1954) and Beverton and Holt (1957) provided fundamentals useful in
establishing spawner/recruit relationships. Both assume density dependence, and both are valid to
describe survival between life history stages. The Beverton-Holt (BH) stock recruitment
relationship is a somewhat more generic representation of density dependent survival, simply
because it does not assume overcompensation, which is not realistic at every stage, nor even for
spawner to smolt survival at low densities. Aa BH function was used to characterize survival
between stages, though density dependence is only modeled at the smolt production stage, not in

the mainstem, nor ocean stages.

Figure 2 shows the correlations between log of recruits per spawner for each population in
the MPG. We see that recruits per spawner are correlated among populations, and nearly as
correlated to the environmental indices, indicating that a large portion of the variability can be
explained from the mainstem outward. The correlations should be expected to have some noise
due to fluctuations caused by any density dependence in the tributaries, but correlation with the
indices provides a basis for building a common relationship. At the very least, it is known that
populations spawn and rear as juveniles in distinctly different spatial areas, then migrate to the
ocean using the same pathway. The potential effect of distinct migration timing is not considered.
Freshwater smolt production of distinct populations is predicted and merged together into a single
migration unit, sharing common outmigration dynamics and a combined in-river/first year ocean
survival, before maturing on a common maturation schedule and returning to spawn after 1, 2, or
3 winters in the ocean (see Figure 3). Migration through the mainstem explicitly distinguishes
between transported and in-river juveniles migrating through the hydrosystem. This distinction is
clearly formulated in the model description (Equations (9)-(11)), where it can be seen that each
population has a transported and an in-river survival probability, and once the fish enter the ocean,

the transported and in-river fish have different survival probabilities.



-4 1 -3 1 -2 2 -60 10 40
TN L1111 L1111 [ANNEN LI

cc —
0.61| (0.53( [O0.72f (0.57 (0.73] [0.28] [0.21] |0.39| [0.27| |0.30 E
1 - <
i
o 5 '?E CR
i 0.56( [0.72 [(0.68| [0.80| [0.27] [0.20| |0.25] |0.20| |0.17
R
-‘, {,j IMN C
RARRE i 077 |o.67| [o.61| |0.26| [0.23| |0.11| |0.24| |0.30F
oo | b C
A . |

q =4 24 % [Los
o - ;lb oo -

3.2 LR L l 0.83| |0.75| |0.17| |0.16| [0.28| |0.25| |0.19
o ) :

0.25 0.42] (0.36] |0.26

%,

=
(@)
3
o
5

FTTTTT
0

- l. K .l ..- .. WEN
: :.:5"“: fj ?? ;}" :gf: 0.21| |0.19| |0.36| [0.28| [0.11
N Tp g . X .
] [om = T ] [=1 [Foo -
SO IR IR AR EARE 050| |0.44| |o.26| |06
| || | ) | o
o2 b .} o ®ge S . o °5 4 |
= | i 2, | ] (2 UPW
S S [ B | RAY) LWWR etk 0.063 D.03¢ |0.36
$ = . K . . e 4
2 I R I N B Ry O B XN N3 PITPH -~
AR AN IR BN % 0.67| |0.46F <
SRR W R R AR = -
= J ", i ", ", " . . 1 [wrr
3. 0o & L, oos o5 X e DX 0.45
5 @ oBa| . ° o ° .“. { '. $ o 0
9' T ey 3 M o..&o.‘ }..s.k," oo ° i.é. .:'g.‘.:- ° ~. Q-‘
o L Pt Ler (2] (20 53 B3 (a) [£7] g e
PRy | W) Y| 1Y | pOE ':; A J:" [
A Y Oy o el [as ke . ES .. o
T i m‘?"ﬂ' T L nninin o

L
-4 1 -2 2 -3 2 -1 2 16 00 1.0
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PTRANS. Brood years 1964-2008 are included.



To estimate parameters, brood years 1964-2008 of observed spawners are used to predict
age class returns from each brood year, and the predicted returns from observed data are
compared to observed returns. The statistical estimation assumes that the age of returns are
measured without error, and differences between observations and predictions are the result of
errors in prediction, known as a process error model (Quinn and Deriso, 1999). The model was fit
to empirical juvenile abundance data, adult abundance data, empirical in-river survival, and
empirical SARs. Smolts were predicted from the combined natural and hatchery spawners on the
spawning grounds, but the returning adults were compared to natural returns only, meaning that
hatchery fish on the spawning ground contribute to production and their offspring are counted as
natural production. The model fitting was performed using maximum likelihood estimation
(MLE) techniques. Markov Chain Monte Carlo simulations (a Bayesian technique) was used to

explore variability in parameter estimates.

Equations (1) - (8) describe the life cycle from spawners to adults for a single brood year.
Upper case letters are state variables of predicted (indicated by “) or observed life history stages.
Lower case letters and Greek symbols are either estimated parameters, fixed parameters, or
derived parameters. Table 1 describes each parameter and variable in the model, and whether it’s
estimated, fixed, derived, or predicted. Smolts in brood year ¢ from population p are predicted

from spawners as

~ a,S t
M — P~D, (1)
P2 = T a Jh
1+ a,Sy/by
where a,, is the productivity for population p. Adults in the ocean following one winter in the
ocean are predicted by the relationship
Transported Inriver
Orpt+s = Ter2 0.98 srpn2 My + (1 = Teva) Speta Suerz Myio 2
B e
arge Ocean River Ocean

where 7, is the proportion of juveniles transported estimated from PIT tag data. Transported fish

are assumed to have transportation survival probability of 98%. st is the survival in year ¢ of



1t 2.t pt
BH(a,b) BH(a,b,) BH(ap,bp)
Ml 2 M2, +2 Mp, H2
r==-"=--=-"=--"-"-"-"=-"-"=-"=-"-"=-"=-"=-=== l ________________ - ==

| |
| CoMMON TRANSPORTED/IN-RIVER AND EARLY OCEAN |
| |

_____________________________________ - - -

Sx,t+2
+S R A
pitt+3 3,pt+3 m 1p,t+3
1-h 3,643 1
s,(1-m )
i Sp.t+4 R4.p,t+4 m 02,p,f+4
1 'h4,z+4 2
s5,(1-m,)
+ Sp.t+5 1 h Rs,p,z+5 10 O3,p,t+5

5,45

Figure 3: Diagram of the structure of the multiple population life cycle model. Shaded boxes indicate
the trajectory of a single population. Before entering the common mainstem and early ocean phases,
all parameters are unique to spawning populations. Afterwards, all populations share the same pa-
rameters. Spawners, smolts, ocean abundances, and returns are all indexed to brood year and pop-
ulation. Survival between the smolt stage and the end of the first year in the ocean (g$7t+2, where x
denotes either transported (T) or in-river migrants (H)) is predicted differently for transported and
in-river fish (Equations (9)-(11)). The + symbol before S’I,7t+a indicates that unfished returns of age a
are being added to the total number of spawners in year ¢t + a.
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Table 1: Description of variables and parameters used in Equations (1) to (12). All variables are
time-indexed to brood year t. Parameters and variables indexed by population p have dimension 6.
Parameters estimated directly are indicated. Parameters derived from auxiliary data and estimated
parameters indicate equation of origin.

Variable Parameter Description (year ¢, population p) Value
MPHQ Brood year t Smolts Equation (1)*
OALp,Hg Brood year ¢ first year ocean resident Equation (2)
]A%g,p7t+3 Brood year t 1-salt returns Equation (3)"
OAg,p,tM Brood year ¢ second year ocean residents Equation (4)
}?4,p,t+4 Brood year t 2-salt returns Equation (5)*
037p7t+5 Brood year ¢ third year ocean residents Equation (6)
]?5,p7t+5 Brood year t 3-salt returns Equation (7)"
R, Mean recruitment for spill scenario j, MCMC iteration ¢ Calculated
Sp,t Brood year ¢ spawners Equation (8)*
SAR, Brood year t SAR Equation (12)*
Pyt Harvest rate for population p year ¢ Derived?
ap Spawner to smolt productivity for population p Estimated
b, Spawner to smolt capacity for population p Estimated
SRt Survival of in-river migrants from LGR to BON Equation (9)
SH.t Early ocean survival of in-river migrants Equation (10)
STt Early ocean survival of transported fish Equation (11)
Tt Proportion of fish transported CSS estimate?
S Survival through second ocean winter 0.6
S3 Survival through third ocean winter 0.74
my Maturation rate after first ocean winter 0.02*
Mo Maturation rate after second ocean winter Estimated
Op s, In-river logistic intercept Estimated
OpH sgr, In-river logistic PITPH coefficient Estimated
owrT sr, In-river logistic WTT coefficient Estimated
YH su ¢ Early ocean logistic in-river intercept Estimated
Y1 s+ Barly ocean logistic transport intercept Estimated
YPDO s1,+ Early ocean logistic PDO coefficient Estimated
YU PrPw s1,+ Early ocean logistic UPW coefficient Estimated
YPH s1,+ Early ocean logistic PITPH coefficient Estimated

! Observed quantities (without *) also represented for these variables.
2 https://www.webapps.nwfsc.noaa.gov/apex/f?p=261:home:0
3 CSS 2013 annual report.

4 Fixed value.
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ocean entry from the tailrace of Bonneville dam for transported juveniles. sp; is the in-river
survival in year ¢ of non-transported fish. sz, is the survival in year ¢ of ocean entry from the
tailrace of Bonneville dam for in-river migrants. The number of 1-salt fish (three years old) that

mature and migrate to spawn is given by

R3piv3 =m101p43 3)

where m; is the maturation rate of 1-salt fish. The predicted abundance of 2-salt fish after the

second year in the ocean is

OQ,p,t+4 = 32(1 — m1)017p7t+3 (4)

where s is the survival probability in the second year. The number of maturing 2-salt fish (four
years old) that return to spawn is

R4,p,t+4 = My O2,p,t+4 )

where my is the maturation rate of 2-salt fish. The predicted abundance of 3-salt fish after the

third year in the ocean is

OS,p,t+5 = s3(1 — m2)027p7t+4 (6)

All fish are assumed to return after the third winter (five years old) in the ocean, i.e,

R5,p,t+5 = O3,p,t+5 (7)

The number of spawners is the sum of the run of each age class of fish not harvested, where there

is a harvest rate h,,; for each population p and each year ¢.

Spi = Rapi(1 = hyiys) + Rap(1 — hyya) + Rspi(1— hspps) ()

The model predicts three survival probabilities through the hydrosystem until the end of

the first year in the ocean: 1. the in-river survival probability Sg,, 2. the first year ocean survival
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probability of in-river migrating fish that are exposed to conditions in the hydrosystem Sy ;, and
3. the first year ocean survival probability of transported fish Sy ;. The predicted SAR is

calculated from smolts and adult returns not harvested.

logit(sR,t) = (SR + (SPHP[TPHt + (SWTTWTT% (9)
Zogit(sHyt) = vg + vppoPDO; + yupwUPW; + vpg PITPH, (10)
logit(sty) = ~r+vppoPDO; + yupwUPW, (1)
SAR, — Rspi+3 + le,p,t+4 + Rspt+5 (12)

Mp 4o

Survivals are linear in logit space, with intercepts dg, vz, and yr. dpg wrr and Ypg ppo.upw are
slope coefficients that predict the magnitude of influence of environmental factors. PITPH is
implemented in such a way as to allow the parameter estimation to predict if it is significant in
both in-river and early ocean survivals. The logit transform is used here because it allows the
search algorithm in the statistical fitting procedure to choose values of the ds and s in the range

(—00, 00) without causing the survival estimate to leave the range (0,1).
Model fitting

Parameters are estimated by comparing the predicted to observed smolt and adult
abundances, as well as comparing predicted to observed in-river survival and overall SARs. The
abundance comparisons include comparing the total returning adult fish of each age R, ; to the
returns of each age in the NMFS population summary data, and comparing the predicted smolts to
observed smolts. The returns at age for each year in the NMFS data are obtained by adding the
spawners of a given age to the catch and hatchery broodstock collection, if any. The parameter

estimates are obtained by minimizing the negative log-likelihoods of the following Equations:

n

ng,a (Ra,t|@1?) = H

~ 2
| (109(By ) = t0g(Rya))
1 OR,. V2T

exp |- — (13)
Rpa
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where ©,, is the set of parameters a, and b, for p=1...6, m;, and m,, and also the Js and s that
predict survivals in Equations (9)-(11). U%%p,a is the process error variance of the prediction of
returning spawners at age. The likelihood term for smolts (Equation (14)) uses the same form, but
uses observed and predicted juvenile numbers for the populations that had juvenile surveys and is

given by

. 2
n log(M, ;) — log(M,;)

1 g\Mp,t 9\ Mp,
L, (My00,) =[] exp —< )

S 14
Pl O'Mp\/27T (14

2
207,

Predicted returns at age and smolt data are treated as having unknown ¢%. The negative
log-likelihood is minimized while substituting the maximum likelihood estimate for 0% into the
likelihood equations. The substitution of this nuisance parameter with its MLE reduces the
number of parameters that need to be estimated. This is done for both process and observation

error assumptions. The MLE for 6% is given by

l —10g(Rupy))?
6_12%%(1 — Z ( Og(R%P,t) - Og(R(lvp,t)) (15)
t

The same assumption was made for juvenile data, so &%/[p is estimated using a similar

substitution. The empirical in-river survival probability estimates (Sg) and the SAR are also

included in likelihoods. The in-river survival likelihood is given by

TR A~ 2
1 (log(srt) — log(3Rr4))
Lo (s2108) = [[ —==exp | - ’ : (16)
: o " t=1 O_SR,t 27T 20—2R,t

where the o, , come from the CSS 2013 annual report, and result in an inverse variance

weighting of the in-river survival estimates for this likelihood term. The likelihood for the SAR is

given by
R 2
Tsar 1 (lOg(SARt) — lOg(SARt)>
ZLsar (SAR|Ogar) = ————exp (17)
' ];[1 OSARV 2T 2U%AR
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where og 4R 1s treated the same way as in the abundance likelihoods, with the estimate of the

standard deviation being substituted into the likelihood.

The likelihoods and the life cycle model were coded and implemented using the AD
Model Builder optimization software (ADMB, free to download at www.admb-project.org). The
package is designed for large scale non-linear optimization problems and is commonly used in
fisheries stock assessments. The best fit to the data was obtained by minimizing the sum of all the
negative logarithms of the likelihoods, which is equivalent to maximizing the product of the
likelihoods. Rather than report the values of the maximum likelihood parameter estimates, the
range of variability in parameter estimates is reported by performing Markov Chain Monte Carlo
(MCMC) simulations using a Metropolis Hastings algorithm native to the ADMB package. The
MCMC simulations produce samples of the posterior probability densities of each parameter. A
chain of 1,000,000 samples was simulated after a burn-in period of 100,000 samples. An
uninformative prior distribution for each parameter was assumed, so the limits of the range of the
sampling distributions are bounded, but the shape of the distribution is predicted by the data.
Sampling from the chain of parameter estimates obtained from the MCMC simulations,
frequency histograms were produced that show the shapes of the distributions of parameter
estimates. Whereas the maximum likelihood estimation provides estimates of each parameter at
the mode, and an estimate of the variance in each parameter evaluated near the mode, the
posterior densities reflect the frequency with which given parameter values are chosen at random
and found to explain the data better than alternative random choices (the essence of MCMC
simulation). Posterior distributions are presented in lieu of point estimates because this provides a
better sense of how well the model was able to fit all abundance and survival data sources, and
gives a relative sense of how well the data might have been explained by parameter values higher

and lower than the most probable combination of parameters.

Prospective simulation

Parameters determine survival rates in relation to environmental conditions, as well as
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how recruitment differs among populations because of estimated productivities and capacities.
We can use estimated parameter values to simulate projected future population trends by
initializing the model with recent spawning abundances. Once the model predicts the adult
returns, it can propagate population trends multiple generations into the future without the need
for additional empirical spawning abundances. We can use the projected population trends as the
basis for evaluating the relative benefits of alternative spill scenarios. Further, we can project the
population trend response to these spill scenarios across ranges of potential changes to freshwater
habitat conditions, and therefore the effect habitat restoration could have on freshwater
productivity and capacity. Further still, by looking at the predicted response across ranges of
variability in parameter estimates, we can examine the variability in the population trend response

to spill and habitat restoration.

The life cycle model is used to predict the long-term effects of four experimental spill
alternatives on population recovery. The experimental spill levels are defined in terms of the

limits of total dissolved gas (TDG) produced at each project.

BiOp Maintain spill levels according to the regulations consistent with the current Biological
Opinion.

115%/120% Increase spill up to limits of 120% TDG in the tailraces and 115% TDG in the
forebay.

120% Increase spill up to a limit of 120% TDG in tailraces and forebays.

125% Increase spill up to a limit of 125% TDG in tailraces and forebays.

The actual spill percentage or volume to produce specified TDG levels depends on flows at
each project (Appendix J, McCann et al., 2015). Since the goal of evaluating different spill
scenarios is to evaluate the effect of spill on PITPH, each experimental level is evaluated at three
flow levels (high, average, and low flow), which produces a total of twelve spill scenarios. Each
scenario predicts a different value of PITPH, which was evaluated with spill caps applied to the

hourly flow data at all eight projects from April 1 through August 31. Flow levels were used from
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Table 2: PITPH and WTT values used for each spill and flow level.

Scenario Spilllevel ~ Flow!  PITPH WTT (days)

1 BIOP High 2.99 13
2 BIOP Average 3.06 16
3 BIOP Low 1.95 26
4 115%/120% High 2.37 13
5 115%/120% Average 2.16 16
6 115%/120% Low 0.87 26
7 120% High 2.12 13
8 120% Average 1.88 16
9 120% Low 0.80 26
10 125% High 1.01 13
11 125% Average 0.44 16
12 125% Low 0.28 26

! Flow were assumed to correspond to observed years
High=2011, Average=2009, Low=2010

specific years as surrogates for high, average, and low years. 2011 is used to represent a typical
high flow year, 2009 to represent an average year, and 2010 to represent a low flow year. These
three years represent a range of flow conditions relative to the historic data (1929 to 2012). The
three years also represent operations that reflect the most recent configuration and operation of the
FCRPS. While 2010 was not a low flow year when the whole spring and summer period is
considered, the flows that took place during the spring period being modeled were considerably
less than other years. Historical water transit times were used from 2011, 2009, and 2010 for the
high, average, and low flow scenarios. The resulting values are in Table 2. Since the future
projections lack the historical record of environmental conditions that existed during the statistical
model fitting, time series of environmental variables need to be provided as model inputs. These
inputs include: a powerhouse passage index, water travel time, PDO, upwelling, harvest rates,
proportion transported, and conversion rates. Transport was set at 20% for all future years to

reflect the declining rate of transport in recent years. The rest of the variables are described below.

PITPH The prospective simulations use powerhouse passage index values predicted for each of

the twelve spill scenarios. PITPH values were produced using an estimate obtained from a
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statistical fitting of passage rates at known spill levels and known flow levels. Historical
passage rates derived from PIT tag data were compared to flow and spill data to estimate
the effectiveness of spill levels across a range of flow levels for each project. The
cumulative powerhouse passage rate was obtained by summing the project rates. A
powerhouse passage index specific to a combination of spill alternatives and flows was used
for all future years, e.g., a BiOp spill at low flow would yield a value of PITPH, which
would be assumed every year into the future. The methods to obtain these values are

discussed in Appendix J of the CSS 2015 Annual Report.

WTT Water transit times were used from 2011, 2009, and 2010 to represent WTT in high flow,

average flow, and low flow.

PDO The Pacific Decadal Oscillation is a statistical calculation of oceanographic conditions that
does not have a mechanism for prospective prediction, but the historical record can be
described as a temporally autocorrelated time series. In order to simulate future population
trends in relation to the PDO effect that was estimate in the statistical fitting, something
other than an average value needs to be used, otherwise none of the inter-annual variability
in its effect on ocean survival will be simulated. To produce a "PDO-like" time series it
should be noted that the PDO is normalized and roughly generates decadal cycles, but the
predominant factor relevant to producing simulated future time series is that it vary from
year to year, reach similar peaks and valleys to a historical record, and sustain increases and
decreases predominantly for about 5 years before reversing direction. Ultimately, a
simulated PDO need only produce a cyclical trend similar in frequency and magnitude to
the PDO. A PDO time series was generated by creating a time series of random draws from
a normal distribution ¢, ~ N(0,1). An AR(1) autocorrelation sequence was then generate,
setting PDO; = ¢; , and PDO, = 0.5PDO;_1+0.7¢, for t € (2, n). The simulated PDO index
was then normalized to ensure the range of values was on the same scale as the empirical

PDO.
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UPW The upwelling index has no cyclical trend, nor is it correlated with the PDO, nor does it
have a discernible temporal trend. To generate a future time series, the historical time series

was sampled at random.

Harvest Historical harvest rates of Snake River Spring Chinook have varied from as high as 70%
in the late 1960’s to under 10% in recent years. Those ranges of total exploitation rates are a
combination of sequential harvests in commercial and sport sectors in the lower Columbia,
Zone 6 harvest, tributary harvests, and brood stock removal. Regulations at current return
abundances call for lower river and Zone 6 rates not to exceed 17%. Since the purpose is to
simulate population recovery potential, return abundances can be expected to increase if
management scenarios are effective. Harvest rates were therefore modeled to increase as
return abundances increase. The harvest rate was modeled to increase asymptotically to

40%, and to reach 20% at an aggregate run abundance of 5000 for all populations.

Conversion Rate Conversion rates represent adult losses net of harvest, e.g., a conversion rate of
0.5 means that 2 adults would need to return to the mouth of the Columbia so that 1 adult
could make it to the spawning ground. Those losses represent all factors not related to
harvest, including predation loss, pre-spawn mortality, adult passage related mortality, and
other causes. In recent years, conversion rates have been fairly high, and historically they
were comparatively low because less passage infrastructure was in place. In an attempt to
capture the variability, but contain the rate in the range of values of recent years where
passage infrastructure is more representative of future conversion rates, random values were
drawn from the most recent 20 years of conversions rates, which produced simulated future

time series of conversion rates in the range of 60% to nearly 100%.

Each prospective simulation draws upon several things: 1. the underlying parameters that
predict survival in relation to environmental conditions, 2. the projected environmental
conditions, and 3. the alterations to underlying conditions that make up the basis for an alternative

management scenario. In the hydrosystem, those are the four spill alternatives evaluated at three
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flow levels. In freshwater, the alterations are presumed levels of productivity or capacity that
could be achieved via habitat improvements. Prospective simulations can capture all combinations
of these alterations to the full life cycle, and represent the predicted outcomes in terms of the

predicted uncertainty that arises from the underlying uncertainty in parameter estimates.

Alternative Treatment Evaluation

The MCMC simulations build a sequence of vectors of parameter values by generating
values at random, and accepting or rejecting randomly generated vectors in proportion to the
relative likelihoods of predicting empirical data. The sequence building proposes a potential
improvement to the fit with a randomly generate alternative parameter vector. The proposed new
vector is accepted or rejected based on relative likelihoods. Eventually, a sequence of a desired
number of samples is produced, which contains many combinations of parameters. The more
likely combinations appear in the chain more frequently than the less likely ones, so if we draw
randomly from the posterior chain thousands of times, we tend to draw the more likely ones more
often. With each draw, we can produce a simulated population trend that is different from another
draw. We can simulate thousands of different population predictions, and the predictions
themselves take on distributions. As a result, we can simulate a population trend where the
conditions can be the same as historical conditions, i.e., same environmental and anthropogenic
conditions, or we can simulate a trend where we manipulate key underlying aspects of the system
to mimic a scenario or question of interest. The result of simulating contrasting scenarios
provides a sense of how much change to overall system behavior can be expected from relative
changes to underlying conditions. Those can either be natural biotic (change in food or
competitors), natural abiotic (changes to climate and the environment), or anthropogenic (changes

in exploitation or hydrosystem operations).

Posterior densities were used as a basis for simulating ranges of possible population trends
when alternative spill levels are assumed under the three flow levels. The Alternative Treatment

Evaluation (ATE) uses a 10,000 samples of parameter values drawn from the MCMC posterior
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chain to simulate future population trends until 2050. It initializes population projections with
empirical spawners from 2010-2014 and parameters from a posterior sample, and uses simulated
conditions in future years (PITPH, WTT, PDO, UPW, TRANS, commercial and Zone 6 harvest,
and upstream migration survival) to predict subsequent spawners of each age in years 2015-2050.
Predicted returning spawners in each year after the first complete brood year returns in 2015 are
used to predict successive generations, meaning the model spawns new generations from

predicted returns and does not require empirical spawners past 2014.

For the ATE analysis, two questions were posed: 1. What is the potential for changes to
spawning and rearing productivity to increase long-term adult return abundance?, and 2. What is
the potential for changes to hydrosystem operations to increase average long-term adult return
abundance and SARs? To address these questions, prospective population trends were simulated,
and average long-term return abundances and SARs were examined. Population trends were
simulated 10,000 times by drawing parameter values randomly from the posterior chain saved
from the MCMC simulations. 10,000 simulated population trends were produced for each of the
twelve spill scenarios, which produces 10,000 population trends for each population, and
therefore an average return abundance for each of the six population for each of the twelve
scenarios. Comparing relative return abundance averages provides an indication of the relative
benefits of the spill scenarios to each of the populations. Simulations were projected for 35 years
and the last 10 years of complete brood returns were used to evaluate performance. Averages are

reported over the period 2036 to 2045.

The potential for the relative benefits of spill scenarios to differ among populations was
also examined. To examine the effect of different spill levels, average long-term abundances were
simulated and the average recruitment abundance and SARs from each population were

calculated. The following logic was used:

1. Start with scenario j = 1

2. Get PITPH; and WTT; for scenario j from Table 2
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Set PITPH, = PITPH; for all years t
Set WTT, = WTT; for all years t

Draw a set of parameters ©; from the posterior chain

A

Simulate population trends from initial spawning abundances and calculate R, ;; for each
population p, where R, ;i 1s the average recruitment to the spawning ground indexed by
brood year, and averaged over the last ten years simulated.

7. Calculate SAR, ;; for each population p, where SAR,, ;; is the average SAR in the last ten

years simulated.

8. Return to step 5 until 2 = 10,000 draws of ©;

9. Return to step 1 and set j = j + 1 until the 12" scenario
10. Use the 6 x 12 x 10,000 R, ;; and SAR,, ;; arrays to show the quantile ranges of predicted
average abundance and SARs from 2036 to 2045 for each population p of each spill

scenario j.

To examine the potential effect of changes in productivity, [?,, ; ; was simulated at four
different spill levels across a productivity range of 50-250 smolts per spawner. Simulations were
evaluated at average flow conditions only. Similar predictions at high or low flows would be
relative to IR, ; ;s evaluated at the MLE of productivity (i.e., R, ;; would be higher for low flows

and lower for high flows). The following steps describes the procedure:

1. Get PITPH; and WTT; for scenario j = 2 from Table 2
Set PITPH, = PITPH; for all years t

Set WIT, = WTT; for all years t

el S

Set a,, = 50 for each of the 6 population productivities and replace the value drawn from the
chain with a,,.

5. Draw a set of parameters O; from the posterior chain.

6. Simulate population trends from initial spawning abundances and calculate R, ;; for each

population p, where R, ;; is the average recruitment to the spawning ground indexed by
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10.

brood year, and averaged over the last ten years simulated, where ¢ is the iteration, and 7 is

the level of a,,.

. Go back to step 5 and repeat for 10,000 draws of ©;.

. Go back to step 4 using a,+10 until all 21 values the range a, € [50-250] have been

simulated.

. Return to step 1 and set j equal to scenarios 5, 8, and 11

Use the 6 x 21 x 10,000 Rpm array to show the quantile range of predicted average

abundance from 2036 to 2045 for each population p of each level j.

To examine the potential effect of changes in capacity, a capacity range of 5000-50000

smolts was used, and R,, ;; was simulated at four different spill levels evaluated at average flow

conditions. The following steps describes the procedure:

10.

. Get PITPH; and WTT; for scenario j = 2 from Table 2
. Set PITPH, = PITPH; for all years t

. Set WIT, = WTT; for all years t

Set b, = 5000 for each of the 6 population productivities and replace the value drawn from

the chain with b,,.

. Draw a set of parameters ©; from the posterior chain.

Simulate population trends from initial spawning abundances and calculate R, ;; for each
population p, where R, ;i 18 the average recruitment to the spawning ground indexed by
brood year, and averaged over the last ten years simulated, where ¢ is the iteration, and j is

the level of a,,.

. Go back to step 5 using b,+5000 until all 10 values the range b,, € [5000-50000] have been

simulated.

. Go back to step 4 and repeat for 10,000 draws of ©;.

. Return to step 1 and set j equal to scenarios 5, 8, and 11

Use the 6 x 21 x 10,000 R, ;; array to show the quantile range of predicted average
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abundance from 2036 to 2045 for each population p of each level ;.

Results

The model was fit to juvenile abundance data, adult abundance data, and in-river survival
and SARs using likelihood Equations (13)-(17). Every possible model combination was
examined by including or excluding PITPH and WTT for predicting S with PITPH and WTT,
and for predicting Sy and Sp with PDO, UPW, and PITPH (only Sg). Using AIC values to
evaluate the top fitting model, the best fit occurred when PITPH and WTT were both included in
the prediction of Si, when PDO, UPW, and PITPH were included in the prediction of Sy, and
when PDO and UPW were included in the prediction of S7. This implies that the overall SAR has
an in-river survival component that is affected by PITPH as well as an ocean survival that is
affected by PITPH, i.e., hydrosystem effects predict variability in early ocean survival (a.k.a:
delayed mortality). The top model was greater than 4 AIC units better fitting than the second best

model, and was used as the basis for doing MCMC simulations and performing the ATE analysis.

Rather than present the point estimates of each variable, the posterior distributions are
presented from samples of the MCMC chain (see Figure 4). The histograms show the relative
frequency of parameter values when 1,000 samples are drawn at random from an MCMC
simulation chain of one million estimates after a burn-in of one hundred thousand samples.
Means and standard deviations are shown above each histogram. The MCMC plots illustrate the
relative certainty in parameter estimates. The narrower the range of predicted values, the more
informative the data were to explaining that parameter. In general, parameter estimation was
bounded to restrict the search algorithm to look within biologically plausible ranges. In the case
of productivity parameters like the Imnaha and Minam productivities, the estimates indicate that
productivities might be higher than the allowed range, but the productivity was bounded to search
between about 20 and 1000 smolts per spawner (actually, between 3 and 7 in log-space), which
should be broad enough to fit any spawner to smolt relationship (approximately 0.4-40% egg to

smolt survival). Possible explanations for this are under reported spawners, strong hatchery
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influence on spawning grounds, or over reported smolt abundance, all of which would elevate

apparent smolts per spawner.

Figure 5 shows the correlations between environmental indices and predicted survival. It
can be seen that the predicted spr; 1s most related to PITPH (a negative relationship). There are
strong correlations between PITPH and both sr; and sg ;. s, shows a very strong correlation

with PDO and also with UPW — stronger than the correlation between sy, and UPW.

By separating hydro passage into transported and in-river migrants, it is possible to further
examine the effect of transportation. Predicted Sy and S7; are shown in Figure 6, and St is
consistently predicted to be lower than Sy ;. The predicted survival of in-river migrants are shown
along with empirical data as well. The predicted SAR in Figure 6 is higher than the empirical
SAR derived from the aggregate of the Snake River PIT tag data, possibly indicating that the
Grande Ronde / Imnaha populations survive better than the Snake aggregate, but alternatively, this
could be compensation for the fact that the predicted in-river survival is lower than the empirical
trend in recent years. Figure 5 indicates that lower early ocean survival of transported fish may be
attributable to the PDO, which is seen to have a higher correlation with S7; than with Sy ;. The
upwelling index is also only somewhat correlated with St ;, not with Sy ;. These two correlations
suggest that transported fish are more sensitive to ocean conditions than in-river migrants, but the
in-river migrants are modeled to be sensitive to PITPH, whereas transported fish are only modeled

to be sensitive to PDO and UPW.

The model fitting results are shown in Figures 7 and 8. Since all populations are forced to
follow the same mainstem and ocean dynamics, yet do not experience the same FSR dynamics, it
should not be expected that all models fit their respective abundance data in the same way. CC
and GR predicted recruits are negatively biased in the first half of of the time series. The
remaining populations do not appear to have the same negative temporal bias in the same early
time period, and overall the IMN, LOS, MIN, and WEN predicted population trends are

consistent with empirical observations, 1.e., a declining trend from the late 1960’s until around
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Figure 4: Posterior estimates of the model parameters for the model. Each histogram shows frequency
of samples from parameter values coming from a Markov chain of length 1,000,000, sampled 10,000
times. Estimated means (and standard deviations) for each posterior sample appear at the top of each
histogram. The top row contains the log productivities for CC, GR, IMN, LOS, MIN and WEN re-
spectively. The second row contains log capacities for the same populations. The remaining posterior
panels are labeled with corresponding symbols.
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1990, then an increase. The smolts per spawner fit (Figure 8) shows density dependence in all

four populations for which smolt data were available.

Figure 9 shows the relative performance of the twelve spill scenarios across all six
populations. The three assumed flow levels are represented in clusters of three (high, average, and
low flow) in each four of the BiOp, 115%/120%, 120%, and 125% spill levels. The general
pattern is that increasing the spill level produces an increase in the total average number of
returning spawners, but within each spill level, the low flow scenario produces more returns than
the high and average flow conditions. This is a product of the fact that the spill is more effective at
lower flow, i.e., when spilling to the same TDG target, a smaller fraction of fish will go through
the powerhouse in low flow years because of increased spill efficiency. The shaded boxes
represent the 25% to 50% quartiles of average adult return abundances () from a sample of
10,000 simulations drawing parameters from the joint posterior distribution of parameters. The
whiskers extend the range to the outer 10% and 90%. Variation in simulated outcomes comes
from the variability in parameter estimates, as well as the variability in the simulated PDO. The
Upper Grande Ronde and Wenaha show the most variability in R, likely owing to the fact that the
combined uncertainty in productivity and capacity yielded more uncertainty in simulated

outcomes.

Figure 10 shows the predicted average SARs for all six populations to LGR. The average
SARs are not adjusted for harvest, meaning that the rate assumes adult returns to LGR after
harvest and adult interdam losses. The SARs reflect the simulated harvest where the harvest rate
increases asymptotically to a maximum of 40%, attaining a rate of 20% at 5000 total Grand
Ronde / Imnaha returns to the mouth. The SAR can be viewed as more of a smolt to Spawner
ratio, because it also captures what would otherwise have been considered tributary harvest and
broodstock removals. As with the R shown in Figure 9, spilling to high TDG levels increases
SARs, and all spill levels show the highest SAR at the lowest flow. At most spill levels, there is a
greater than two fold increase in the SAR at low versus high flows. Across spill levels, there is

approximately a two fold increase in the SAR when increasing TDG cap level from BiOp levels
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to the 125% level. Interestingly, there is an apparent net decrease in the SAR for the Catherine
Creek population at BiOp level spills when the assumed flow levels decrease from high to average
flows. This is only evident in the Catherine Creek population. The most likely explanation for this
is that Catherine Creek is the population with the lowest capacity, and thus is limited in total
production, which can interact with harvest rates in a depensatory way because of the way the
simulated harvest rates increase as the total MPG returns increase. At the lower total life cycle
productivities implicit in lower spill rates, the effect is that slightly higher in-river juvenile
migration survival increase total MPG returns enough to drive the harvest rate up, and the
Catherine Creek population suffers the consequence of being the weaker stock in a mixed stock
complex. The effect is present, but less noticeable in the returns (see Figure 9). Figure 11 shows
that the SARs at the mouth of the Columbia are the same for all populations, confirming that

harvest is the cause.

Relative performances of spill scenarios can also be evaluated using the ratio of the
median of long-term average return abundances to the BiOp level spill prediction at each flow
level. Figure 12 shows the median R (of the 10,000 predicted Rs) at a given spill level for each
flow level compare to the median BiOp level spill for the same flow level. There is nearly a 50%
gain from BiOp to 115%/120% for all flow levels, but only high and average flows show
noticeable gains in the transition from 120% spill to 125% spill. The ratio of the medians is
shown without uncertainty to make the trend in the ratios more apparent. The same trend can be
seen when the ratio of each independent simulation is shown with associated uncertainty (see
Figure 13). This perspective only illustrates what performance would look like if spill were
increased relative to BiOp at a given flow, and only if spill levels were sustained every year, and
flows remained at the same level every year. Looking at ratios of median Rs for each flow level
relative to high flows at BiOp, the importance of flow levels is more apparent. Figure 14 shows
the ratio of the median predicted R at each spill scenario at a flow level to median predicted R
atBiOp spill and high flow. The flow level alone explains about a 100% improvement or more at a

BiOp level spill when comparing low to high flow. The highest incremental gains come at average
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and high flows when spill is increased to 125%, but it can be seen that relative to low flow BiOp

spill, average and low flows show higher relative gains.

Figure 15 shows the effect of spilling, but evaluated across a range of productivities for
each population. Each line represents one of the four spill levels evaluated at average flows for
each of the spill levels (BiOp, 115%/120%, 120%, and 125%). The lines represent the median
predicted R from 10,000 simulations. The figure is intended to demonstrate the relative change in
R across a range of productivities at four spill scenarios. Uncertainty around each line cannot be
shown without obfuscating the contrast among spill scenarios, but can be inferred from Figure 9,
where the variability at the estimated productivity is shown for each spill scenario at average flow.
The grey shaded area in Figure 15 corresponds to the 25%-75% quartile range of uncertainty in
the productivity estimate, so improvements to productivity would fall to the right of the shaded
area. The general pattern is that larger gains from increased spill are realized by populations that
have high capacity (Imnaha and Wenaha), and that the gain is greater still if the productivity is

high (Imnaha).

In all six population, there is a predicted increase in R if productivity is increased, but
unless capacity is relatively high, the gains are not very significant. The Imnaha, Minam, and
Wenaha have the highest capacities, and therefore predict larger gains in average abundance from
increases in productivity. There are no cases where increasing freshwater productivity has more

influence on R than increasing spill levels.

Figure 16 shows the effect of spilling, but evaluated across a range of capacities for each
population. Like the productivity comparisons, the lines represent the median predicted R from
10,000 simulations at four spill scenarios. At the levels of SARs simulated, freshwater
productivity does little to limit R when population trends are projected across a range of
capacities. This is because as long as average SARs are sufficient to return enough adults to
replace the number of parents that produced those smolts, the only thing limiting population

increase is capacity. The shaded areas represent the 25%-75% quartile range of estimated value of
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Figure 12: Sensitivity analysis of predicted long-term average return abundance between 2036 and
2045 at each flow level when compared to BiOp spill at each flow level.
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Figure 14: Sensitivity analysis of predicted long-term average return abundance between 2036 and
2045 at each flow level when compared to BiOp spill at a high flow level.
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the capacity estimated from the posterior chain of parameter estimates which, if no action were

taken, is the level of benefit expected from increasing spill.

Discussion

The predicted benefits of spill levels across high, average, and low flows were examined,
and it was shown that predicted SARs and long-term average return abundances respond
positively to increased spill. It was also shown that the most significant benefits to SARs occur at
the highest TDG limit spill levels, at the lowest flow levels. It was also shown that low flows are
predicted to contribute more significantly to increases in SARs at BiOp level spills than at higher
levels of spill. However, at higher assumed flow levels, the life cycle model predicted that the
highest TDG limit spill level (125% TDG) produced a larger incremental benefit to SARs than the

transition upward from the lower spill levels.

The MCMC posteriors show the range of variability in the 0 py; parameter estimate to be
very narrow with estimates of approximately 0py = -0.4 and 6;5,,, = 0.01. To put that in context,
the estimated in-river survival at average levels of PITPH and WTT is estimated to be around 0.37
with 0 = 0.51. That would be the estimated survival at average historical levels of PITPH and
WTT, meaning that it is not the highest survival possible with PITPH and WTT at their most
favorable values. If we consider values of PITPH of 3 and 0.3, representing high and low spill
scenario values, then the in-river survival is predicted to increase from 0.42 to 0.70 at average
WTT values (by adding -0.4 times a difference of PITPH = -2.7 to the logistic term in Equation
(9)). This implies that PITPH is capable of explaining shift in in-river survival of about 0.28
across the range of spill scenario PITPH values. There is slightly more variation in the estimate of
vu (04, =0.22), but the effect is similar to how PITPH affects early ocean survival of in-river
migrants. The model predicts that at average PDO and UPW conditions, PITPH can explain an

increase in first year ocean survival.

The relative benefits of changes to freshwater production parameters and changes to

hydrosystem operations were presented. Simulations showed that the relative average return
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Figure 16: Sensitivity analysis of predicted long-term average abundance between 2036 and 2045
(R) when tributary capacities span the range from 5000 to 50000 smolts. The lines are the median
(R) predicted return average abundance at four spill levels evaluated at average flows. Grey shaded
areas denote the estimated range of variability in the capacity parameters evaluated from posterior
distributions.
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abundance (see Figure 9) benefits are predominantly limited by capacity. The range of benefit
from additional spill was a two to three fold increase in average return abundance evaluated at
average flow levels, with the most extreme case being a 4.3 fold increase in average return
abundance from a BiOp spill level at high flows compared to a 125% TDG spill level at low flows
in the Wenaha (which has the highest estimated capacity). Looking more closely at how increased
spill interacts with changes to productivity and capacity, it was predicted that most of the potential
gains from productivity came from populations that have low productivities and high capacities
(see Figures 15 and 16), and the benefits came from increasing productivity up to 150 smolts per

spawner, but not much beyond that unless the capacity was exceptionally high.

Increasing spill levels provides a benefit regardless of the productivity or capacity.
Looking at the potential benefits of increasing capacity at different spill levels, the contrast across
populations is not as strong. This is because the benefit of increasing in-river survival of juvenile
migrants is more significant than the differences in freshwater productivities. From these results it
seems apparent that benefits obtained from increases to productivities are ultimately bounded by
capacities, as are the benefit obtainable from increased spill, but with the distinction that the
increased average abundances predicted from increasing productivities by 50 smolts per spawner
are less than the benefit of going from a BiOp spill scenario to the next higher TDG level spill. It
should be noted that there is a more significant relative improvement in long-term average

abundance going from a BiOp to 115%/120% level of spill than the next increase to 120% TDG.

The analysis shows that there are predicted benefits from increasing spill levels at all
levels of flow, but most significantly at low flows, which is when spill efficiency is highest. Those
benefits not only exceed the benefits of habitat actions aimed at productivity increases, but they
are more immediately implementable. Ultimately, habitat actions are required to bring population
abundances back to historical levels, but increased spill scenarios provide a timely means of
increasing SARs and abundances. Looking at the results on a case by case basis for each
population, it should be noted that there are some obvious contrasts. The Imnaha and Minam both

have good productivities and capacities, but being partially in Wilderness Areas, are not likely
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recipients of any habitat actions . The Upper Grande Ronde and Catherine Creek, on the other
hand, have very low estimated capacities, and the Upper Grande Ronde has a very low
productivity. Both of these could benefit from habitat improvements, but private land ownership
within the drainages impedes and delays habitat restoration action on significant portions of the
drainages, making it difficult to effect change with the speed and intensity required. On the other
hand increased spill levels could have immediate benefit, and this analysis predicts that increasing
from BiOp to 115%/120% levels could lead to about a 50% increase in return abundances, and
spill to a 125% TDG level could lead to about a three fold increase at current productivity and
capacity levels. It seems on first glance at the predicted sensitivity to productivity increases that
changes are ineffectual relative to increased spill levels, but this view does not account for the
natural outcome that increasing productivity inherently involves improving areas that currently
have very low productivity, and by doing so opens up new areas for spawning and rearing.
Adding areas of improved productivity reduces the burden on other areas to support production,
which has the effect of increasing capacity simultaneously. In short, capacity increases are

implicit in actions to increase productivity.

It has been shown that increases in 2 can be effected by three different means, and that the
relative gains from productivity improvements can be dependent on capacity limits in freshwater
spawning and rearing. Increasing spill levels can increase predicted median R by up to 4.3 fold if
capacity is high enough, and generally by 2 fold or more, depending on flow levels. Because the
magnitude of the performance gain at low flows is highest going from BiOp to 115%/120%, it
seems an obvious minimum operation alternative to spill at 115%/120% at low flows. The
performance gains in the next transition to 120% are not predicted to be as high, i.e., an apparent
diminishing return. The final transition to 125% TDG level spill predicts a more significant gain
in predicted median R than the previous increment. At average and high flows, the relative
increases in R are gradual and consistent, without the diminishing returns seen at lower flows.

Figure 9 and 10 show these gradual and diminishing returns of performance across spill scenarios.

It is noted that predicted average SARs are higher (in the range of 0.02-0.06) than
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empirically observed SARs (less than 0.005 to about 0.03 in recent years since court mandated
spills), but it should be emphasized that the analysis is intended to gauge relative expected
increases in SARs, not predict absolute SARs. The higher estimate is consistent with the positive
bias seen in the comparison of predicted and empirical SARs. The reasons for the bias are unclear
at the current stage of the analysis. It could be because too much weight is being given to fitting
older SARs and in-river survivals, or it could be because the SARs are derived from the entire
Snake River aggregate and are being compared to predicted SARs based on predicted returns of
populations in the Grande Ronde / Imnaha MPG. Fitting to abundance data may actually predict
higher SARs than the Snake River aggregate SAR, or alternatively, the abundance data may
contain a bias that predicts a higher SAR. A 20% transportation rate was also assumed for
simulation purposes, which is lower than the average of 37% transportation between 2007 and
2012 migration years. Since transported fish are predicted to survive in the ocean at a lower rate
than in-river migrants, the simulation analysis should be expected to predict higher overall SARs

than if the transportation rate was higher.

Focussing not on the absolute magnitude of the SARs, but rather on the relative predicted
change in SARs with increased spill, the predicted increase from the 0.02-0.06 range at BiOp spill
to the 0.06-0.08 range at 125% spill can be interpreted by the change in PITPH. The 125%
scenario represents PITPH values of 0.28-1.01 across all flows, as opposed to the range of
1.95-3.06 at BiOp spill. These numbers can be compared to the SARs of John Day Chinook,
which experience five less powerhouses than Snake River Chinook. John Day SARs are in the
0.02-0.08 range. PITPH averages about 2.7 across all flow levels in the BiOp scenario for Snake
River Chinook crossing 8 dams. If John Day Chinook cross only 3 dams, then the PITPH should
be in the vicinity of a 3/8th fraction of PITPH, which is 1.00. The 120% scenario is the closest to
having an average PITPH of 1.00 across all flow levels, and its predicted SARs are similar to

those of the John Day.

R was predicted across a range of assumed fixed freshwater productivity levels and

capacity levels that differed from the estimated values of the parameters. R was also predicted
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across a range of fixed alternative hydrosystem operational levels. The predicted Rs show the
relative predicted outcome under those fixed conditions and provides an indication of the relative
behavior of the populations. This oversimplifies operational and biological realities, but
nonetheless provides a perspective of the relative benefits that can be expected. The comparative
benefits from tributary actions assumed that productivity and capacity would immediately take on
fixed values reflecting improved conditions. This means that when we look at the predicted value
of R at 150 smolts per spawner, we are assuming that demographic rates applied immediately
from 2010 on onward, however it’s important to keep in mind that any treatment intended to
effect an increase in productivity or capacity would involve a lag time before reaching the target
rate. For comparative purposes it’s still meaningful to see the relative gain across a range of
productivities, but in reality it can take a long time for any changes to habitat to translate to
increases in productivity. The same goes for capacity. Furthermore, just like freshwater
conditions won’t remain static, it clearly can’t be the case that flows will always be one of the
three levels examined. Notwithstanding the limitation of the static assumptions in the model
predictions, presenting the relative outcomes still gives us a sense of how much life cycle survival
can improve when year to year variability in flow and operational conditions occur. What has
been shown is that an increase in R is predicted to occur if spill is increased, and that the relative
increase depends on the flow and the spill scenario. While flows will vary from year to year, the
results show that there is a measurable predicted increase in R with increased spill, and the

increase is relative to flow.

Results indicate that abundance can increase as a result of alternative treatments. A target
R can be achieved by means of selecting a target productivity, capacity, or alternative spill level.
In either of the three cases, there may be implementation issues or time lag issues. Despite any
caveats to the limitations in attaining productivity or capacity improvements however, it must be
noted that action both in freshwater and in the hydrosystem is likely to be most effective, and
gains obtained from reducing PITPH via increased spill serve as a buffer for potential

implementation lags in productivity and capacity treatments. Ultimately, where habitat
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improvements are needed, they provide the highest long-term abundance gains, particularly where
capacity is increased, but the immediate benefits of increasing spill are evident and should be

considered vital to recovering abundances.

Conclusions

The results presented in this analysis demonstrate the relative sensitivity of long-term
return abundance to changes in freshwater production parameters and hydrosystem operations.
Relying on the empirical estimates of life cycle model parameters, and particularly the finding
that a PIT tag based indicator of powerhouse passage is a significant determinant of in-river
survival and early ocean survival, it was demonstrated that alternative spill scenarios can have
varying degrees of influence on population recovery, depending on the productivities and
capacities of the populations. It was found that populations with low capacities (eg: Catherine
Creek, Upper Grande Ronde, and to a lesser extent the Lostine) don’t realize as much benefit
from increasing freshwater productivity as population with higher capacities, but it is expected
that habitat improvements aimed at increasing productivity would benefit capacity as well, so the

actual gains need to account for the dual benefit of habitat improvements.

This analysis predicted that average return abundances and SARs increase with higher
spill. The results are preliminary in the sense that the simulated future conditions are speculative
and have a strong influence on predicted survival. The predicted outcomes represent
approximations of the relative magnitude of increased survival and return abundance that are
predicted relative to spill levels. The results are presented as contrasts under different fixed flow
conditions, which can be used to provide guidance in the application of spill at relative
approximate flow levels. It was shown that at low flows, substantial gains in performance are
predicted to occur if spill levels are increased from BiOp levels to the 115%/120% TDG levels.
Approximately a 50% increase in average return abundances was predicted. 125% spill levels in
years of high flows predicted greater than two fold increases in return abundances, with some

population receiving greater benefits from higher spills because of their high freshwater spawning
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and rearing capacities. This analysis predicts that higher SARs and long-term abundance
increases can be achieved by increasing spill levels, and that the benefits of spill are sensitive to
flows. The immediate benefits of increased flow levels, combined with the long-term benefits of
habitat actions predict potential recovery of populations to up to three fold increases in abundance

above levels predicted by BiOp level spill.
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4b. The COMPASS Model for Assessing Juvenile Salmon Passage through the
Hydropower Systems on the Snake and Columbia Rivers

James R. Faulkner, Daniel L. Widener, and Richard W. Zabel

Introduction

The Comprehensive Passage (COMPASS) Model was developed as a tool for investigating the
passage experience of migrating juvenile salmon and steelhead under various environmental
conditions and management scenarios (Zabel et al. 2008, COMPASS 2008). COMPASS was
reviewed by the ISAB in 2008 and has been used to inform a variety of management decisions

concerning juvenile salmon since then.

COMPASS contains physical descriptions of the Snake and Columbia Rivers and their main
tributaries, which include spatial representations with widths, depths, and elevations to allow
volume and velocity calculations. The hydroelectric dams in the system are also represented and
algorithms are used to route flow through the set of passage routes unique to the configurations
at each dam. This allows dam operations such as spill and surface collector operation to be

accounted for on daily or finer time steps.

Flow is input at the river headwaters or at the dams, either as measured observations or as
predictions from hydrological models. Other possible environmental inputs include temperature,
turbidity, and dissolved gas. COMPASS can also take spill proportions as inputs and can take
surface weir volumes and operation schedules. Schedules and rates of smolt transportation on

barges are also taken as inputs for operation of collector dams.



COMPASS contains a set of biological models we developed for arrival timing at the head of the
hydropower system, reservoir travel time, reservoir and dam survival, and dam passage routing
for various species. These models were all fitted to observed data and are functions of the set of
variables describing environmental conditions and dam operations that are available to
COMPASS. When combined together, these sub-models allow predictions of the passage
experience of population releases through the system to Bonneville Dam tailrace. We can then
use predicted arrival distributions at Bonneville Dam as inputs into models for smolt-to-adult

returns (SAR).

Here we demonstrate the use of the model on a set of simulated data representing five different
management scenarios. These scenarios represent different sets of rules for the operation of
hydroelectric dams which are meant to improve conditions for fish passage. We present
COMPASS model results for these scenarios. We also briefly describe some of the updates that

have been done to COMPASS since 2008.

Methods

Model Updates

Since the most recent documentation of COMPASS (Zabel et al. 2008; COMPASS 2008), we
have made several updates to the sub-models and to the general functionality of the COMPASS.

The following is a brief list of changes:

e Updated the data used to calibrate the travel time and reservoir survival components of

the model to 1998-2015.



Updated the data for the dam passage routing models (spill efficiency and fish guidance
efficiency) to 1998-2013. Also made changes to passage models to better account for
observation uncertainty.

Updated estimates of route-specific survival for dams on the Snake and lower Columbia
Rivers. These estimates come from experiments on fish implanted with radio tags or
acoustic tags.

Changed the structure of the reservoir survival models. We use a hierarchical modeling
format where random effects for the true unknown survival probabilities follow beta
distributions, and the observed survival (Cormack-Jolly-Seber estimates) follow log-
normal distributions conditional on the latent random survival effects. This structure
allows a more accurate decomposition of the uncertainty.

Added component to the reservoir survival models that allows predator density and smolt
density to affect survival through a functional response.

Updated models that predict dissolved gas supersaturation based on flow, spill,
temperature. This allows us to produce estimates of exposure to supersaturation and even
related mortality.

Added models for dam passage for the dams on the Upper Columbia River. These
including route specific survival and functions for passage route probabilities. We also
have travel time and survival models for fish originating in the Upper Columbia.

Added more time steps to the reservoir passage model (up to 16 per day) to allow more

accurate travel time calculations.



Prospective Modeling

Five management scenarios were investigated. The first scenario, labeled as the Base scenario,
represents the current configurations and operations of the dams, including timing of
transportation. Three scenarios, labeled Optl, Opt2, and Opt3, represent minor adjustments to
the operations of the Base scenario, including slightly higher levels of spill in Opt2 and Opt3.
The final scenario, labeled ORPIv2, has the same dam configurations and transport rules, but has
higher levels of spill throughout the migration season. This was generated by increasing the

allowed spill caps at all the dams.

The Bonneville Power Administration (BPA) generated the scenarios using their hydrological
model, HYDSIM. This model accurately accounts for power generation and spill and associated
hydrology in the hydropower system and outputs daily predictions of flow, spill, and reservoir
elevation associated with each dam. This was done for a set of 80 water years representing
headwater inputs for the years 1929-2008. These water inputs are applied to the operation rules
determined by each scenario by HYDSIM. We used the daily flow, spill, and reservoir elevation
values predicted by the HYDSIM model for the 80 water years for each scenario as inputs to

COMPASS.

We constructed average population arrival distributions at Lower Granite Dam for the combined
population run at large (combined hatchery and wild, tagged and untagged) based on historical
data. We used relationships from regression models of median arrival date on median April-June

flow to shift the average population distribution in response to predicted flows. This allowed



arrival timing at Lower Granite Dam to vary with water year as a function of flow. These
predicted population distributions were used as release profiles in COMPASS, where each water

year had the same number of fish released.

We ran the COMPASS model for each of the 80 water years for each scenario. We produced
separate results for Snake River spring-summer Chinook and steelhead. We collected several
summary measures of passage experience for each year, including in-river survival from Lower
Granite Dam to Bonneville Dam, proportion of fish transported, average travel time between
Lower Granite Dam and Bonneville Dam, and SAR for combined transported and in-river

migrants.

Results
Here we present results from prospective model runs for all five scenarios (Tables 1, 2). In
general, differences between scenarios for the various COMPASS output statistics were smaller

than the year-to-year variability within scenarios.

For Snake River spring-summer Chinook salmon, the Optl scenario was almost
indistinguishable from the baseline scenario in all COMPASS output statistics. The Opt2 and
Opt3 scenarios showed small changes from the baseline; both scenarios have slight
improvements in in-river survival (Figure 1), small decreases to travel time (Figure 2), and a
small increase in SAR over the baseline (Figure 3); however, the two scenarios are difficult to
distinguish from each other. The ORPIv2 scenario shows larger differences from the baseline

than the Opt2 or Opt3 scenario for all COMPASS output statistics, but the difference in in-river



survival is still small (Figure 1). The ORPIv2 scenario does have a noticeable decrease in travel
time compared to the baseline, and a corresponding increase in overall SAR (Figures 2, 3). The
scenarios with increased levels of spill (Op1, Op2, ORPIv2) showed steadily decreasing numbers

of fish transported (Table 1).

Patterns in COMPASS predictions for Snake River steelhead resembled those seen for Chinook.
Once again, all other scenarios showed small increases in survival and small decreases to travel
time relative to the Base scenario; however, the Optl scenario was so close that it cannot be
considered significantly different (Figures 4, 5). The Opt2 and Opt3 scenarios are fairly close to
each other, but the Opt3 scenario has a slightly lower SAR than the Opt2 scenario, despite
having slightly shorter travel times (Figures 5, 6). This is likely due to differences in the survival
rates of later migrating fish, since despite the shorter travel times, the Opt3 scenario has a
slightly later mean arrival date at Bonneville than the Opt2 scenario (Table 2). Later arriving fish
have a lower SAR, so if more late in-river migrants survive to Bonneville, the mean SAR will
decrease. This can be unintuitive, since the total number of fish surviving to adulthood will still
be increasing due to the improved in-river survival rate. A similar pattern appears to be
occurring for the ORPIv2 scenario; the ORPIv2 scenario has lower transport SAR and inriver
SAR than several of the other scenarios, but it has the highest overall SAR (Table 2). This
results from the low proportion of fish transported in ORPIv2, since our models of SAR predict
that in-river migrants have higher SAR than transported fish that arrive at Bonneville on the
same date. We must stress that the reason some of these unintuitive patterns are arising in the

COMPASS outputs is because the differences in survival, travel time, and SAR are quite small.



The most significant impact these scenarios appear to be having is in the proportion of fish

destined for transportation.

Table 1. Mean COMPASS statistics predicted for Snake River spring Chinook salmon for the

five management scenarios. PDT = Proportion of fish destined for transport.

Mean Mean Mean

Scenari  Surviv  Arrival at Overall Inriver Transport

0 al BON SAR SAR ed SAR PDT
0.0173986  0.0071351

Base 0.5500 13536 0.01195633 9 6 0.401
0.0174533  0.0071447

Optl 0.5514 135.15 0.01191687 9 7 0.407
0.0174891  0.0071297

Opt2 0.5615 13491 0.01231473 6 3 0.375
0.0174325  0.0070411

Opt3 0.5593 135.68 0.01256217 0 8 0.345
0.0173005 0.0070714

ORPIv2 | 0.5624 135.48 0.01284946 2 2 0.315

Table 2. Mean COMPASS statistics predicted for Snake River steelhead for the five

management scenarios. PDT = Proportion of fish destined for transport.

Mean Mean Mean

Scenari  Surviv  Arrival at Overall Inriver Transport

0 al BON SAR SAR ed SAR PDT
0.0207390  0.0152275

Base 0.4325 134.13  0.01701985 2 9 0.494
0.0207684  0.0152524

Optl 0.4331 133.96  0.01701391 7 0 0.501
0.0207227  0.0152129

Opt2 0.4410 134.27  0.01714402 2 2 0.469
0.0207171  0.0148828

Opt3 0.4385 135.22  0.01711942 3 9 0.434
0.0205281 0.0150519

ORPIv2 | 0.4405 135.14  0.01731227 2 2 0.408
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Figure 1. Boxplots of COMPASS predicted in-river survival for Snake River spring Chinook
salmon by management scenario.



Boxplots of Overall SAR
Snake River Chinook; colored lines = means
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Figure 2. Boxplots of COMPASS predicted SAR (in-river and transported fish combined) for
Snake River spring Chinook salmon by management scenario. Means are presented with colored
lines and medians with black lines.
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Figure 3. Boxplots of COMPASS predicted in-river travel time for Snake River spring Chinook
salmon by management scenario.
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Figure 4. Boxplots of COMPASS predicted in-river survival for Snake River steelhead by
management scenario.
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Boxplots of Overall SAR
Snake River Steelhead; colored lines = means
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Figure 5. Boxplots of COMPASS predicted SAR (in-river and transported fish combined) for
Snake River steelhead by management scenario. Means are presented with colored lines and
medians with black lines.
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Figure 6. Boxplots of COMPASS predicted in-river travel time for Snake River steelhead by
management scenario.
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Discussion

The results from the management scenarios show that the scenarios with increased spill had
small effects on in-river survival. The increased spill resulted in shorter predicted travel times
and smaller predicted proportions of fish transported. Faster travel times will get fish to the
estuary sooner. There is an optimal time window for arrival at the estuary, with too early or late
arrivals resulting in lower SAR’s. The SAR relationships differ for transported and in-river fish,

so the amount and timing of transportation will affect overall combined SAR’s.

One may question whether the small change in predicted responses for the ORPIv2 scenario with
significantly increased spill relative to those from the Base scenario representing current
conditions suggest that COMPASS is not accurately predicting the effects of spill on survival
and SAR. Our response is that the predictive models we use are fit to data, and large effects of
spill were not supported by those data. We account for direct mortality due to spill and other
passage routes at the dams. The passage route probabilities are dynamic and depend on spill,
flow, and other inputs. Therefore, spill affects passage routing, and that in combination with
route-specific mortality rates determines overall dam survival. During the calibration (model
fitting) and model selection for our reservoir survival models, we allowed a variable to enter the
models that measured the proportion of fish in a reservoir that passed through a spill or surface
passage route at the previous dam. This variable was not retained in the best models selected by
our model selection process, and typically was not a significant predictor of survival. A similar
variable was used in our travel time models to account for delay at a dam on the downstream end
of a reservoir. This variable was selected by many of our travel time models, and therefore spill

and surface passage have an effect on travel times in the model. Those travel times directly
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affect reservoir survival and indirectly affect SAR through arrival times at Bonneville Dam.
Therefore, spill affects survival directly at dams and indirectly affects survival and SAR through

travel times.

We did not attempt to account for the negative effects of increased spill related to increased
production of saturated gas and possible trauma induced by passage through highly turbulent
spillways. Spill level and pattern can also create eddies in the tailraces of some dams depending
on flow and turbine operations. Fish trapped in eddies are more vulnerable to predation and are
subject to longer travel times. Such conditions are not modeled in COMPASS and effects on

survival are not explicitly accounted for.
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Modeling Arrival Distributions of Populations of Juvenile Snake River Spring-Summer
Chinook and Steelhead at Lower Granite Dam and Effects of Arrival Timing on Predicted
Survival and Population Experiences

James R. Faulkner, Daniel L. Widener, and Richard W. Zabel
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Introduction

The migration timing of juvenile salmonids determines the conditions they will experience
within their migration corridor as well as conditions they will encounter when they enter the
estuary and ocean. These conditions determine their probability of survival and determine the
resources they will encounter in their search for continued growth. Accurate prediction of
migration timing and arrival distributions of populations at key points in their migration corridor
is therefore a critical component in life cycle models used for predicting population trends and

assessing management scenarios.

We focus on the timing of individuals arriving at Lower Granite Dam (LGD), which is the first
dam on the lower Snake River encountered by juvenile migrants. This location also acts as an
entry point into the Federal Columbia River Power System (FCRPS), which is composed of a
series of dams and reservoirs on the lower Snake and Columbia Rivers, is closely monitored, and
benefits from a set of detailed ecological models d