The Council’s Regional Portfolio Model

Michael Schilmoeller
for the Northwest Power and Conservation Council
Demand Forecasting Advisory Committee
Wednesday, December 03, 2008

Overview

- Planning Principles
- Selection of Resource Plans
- Load Representations
- Treatment of Conservation
Different Kind of Risk Modeling

- Imperfect foresight and use of decision criteria for capacity additions
- Adaptive plans that respond to futures
 - Primarily options to construction power plants or to take other action
 - May include policies for particular resources
- “Scenario analysis on steroids”
 - 750 futures, strategic uncertainty
 - Frequency that corresponds to likelihood

Planning Principles

Model Overview
Sources of Uncertainty

- **Fifth Power Plan**
 - Load requirements
 - Gas price
 - Hydrogeneration
 - Electricity price
 - Forced outage rates
 - Aluminum price
 - Carbon allowance cost
 - Production tax credits
 - Renewable Energy Credit (Green tag value)

- **Sixth Power Plan**
 - All of those to the left, except, perhaps, aluminum price
 - Power plant construction costs
 - Technology availability
 - Conservation costs

Most Elements of the Resource Plan Are Options To Construct

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCT</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>610.00</td>
<td>1,220.00</td>
</tr>
<tr>
<td>SCCT</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>800.00</td>
</tr>
<tr>
<td>Coal</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Demand Response</td>
<td>500.00</td>
<td>750.00</td>
<td>1,000.00</td>
<td>1,250.00</td>
<td>1,500.00</td>
<td>1,750.00</td>
<td>2,000.00</td>
</tr>
<tr>
<td>Wind_Capacity</td>
<td>0.00</td>
<td>100.00</td>
<td>1,500.00</td>
<td>2,400.00</td>
<td>4,400.00</td>
<td>5,000.00</td>
<td>5,000.00</td>
</tr>
<tr>
<td>IGCC</td>
<td>0.00</td>
<td>0.00</td>
<td>425.00</td>
<td>425.00</td>
<td>425.00</td>
<td>425.00</td>
<td>425.00</td>
</tr>
<tr>
<td>Conservation cost-effectiveness premium over market</td>
<td>10.00</td>
<td>5.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avg New Conservation</td>
<td>443</td>
<td>746</td>
<td>1071</td>
<td>1416</td>
<td>1774</td>
<td>2020</td>
<td>2198</td>
</tr>
</tbody>
</table>
Why Use a Schedule of Construction Options for a Resource Plan?

- More realistic!
- Necessary for capturing construction risk
- Consistent with earlier Council Plans

Power Resource Risks
Costs and Considerations

- Commercial Availability Risk
- Construction Risk
 - Responding fast enough to capture value
 - Sunk siting and permitting costs
 - Construction materials cost
 - Mothball and cancellation costs
- Operation Risk
 - Fuel, maintenance, and labor costs
- Retirement Risk
 - Carrying the forward-going fixed cost of an unused plant
 - Undervaluing and retiring a plant that may have value in the future
The Construction Cycle

- After an initial planning period, there typically large expenditures, such as for turbines or boilers, that mark decision points.

![Graph showing cash expenditures and construction flexibility over time.]

Construction Optionality

![Bar chart showing capacity over time with different stages: planning, construction, committed construction, in service, and delay.]

Resource construction flexibility
How Do We Interpret and Use a Schedule of Construction Options?

- As a ceiling for what should be sited and licensed
- To develop signposts for re-evaluation

Additions in Megawatts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CCCT</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>610.00</td>
<td>1,220.00</td>
</tr>
<tr>
<td>SCCT</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>800.00</td>
</tr>
<tr>
<td>Coal</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Demand Response</td>
<td>500.00</td>
<td>750.00</td>
<td>1,000.00</td>
<td>1,250.00</td>
<td>1,500.00</td>
<td>1,750.00</td>
<td>2,000.00</td>
</tr>
<tr>
<td>Wind Capacity</td>
<td>0.00</td>
<td>100.00</td>
<td>1,500.00</td>
<td>2,400.00</td>
<td>4,400.00</td>
<td>5,000.00</td>
<td>5,000.00</td>
</tr>
<tr>
<td>IGCC</td>
<td>0.00</td>
<td>0.00</td>
<td>425.00</td>
<td>425.00</td>
<td>425.00</td>
<td>425.00</td>
<td>425.00</td>
</tr>
<tr>
<td>Conservation cost-effectiveness premium over market</td>
<td>Average New Conservation</td>
<td>443</td>
<td>746</td>
<td>1416</td>
<td>1774</td>
<td>2020</td>
<td>2198</td>
</tr>
</tbody>
</table>

Spinner Graphs

- Illustrates “scenario analysis on steroids,” one plan, across all futures
- Link to [Excel Spinner Graph Model](#)
Overview

- Planning Principles
- Selection of Resource Plans
- Load Representations
- Treatment of Conservation

Resource Plan Selection

- Trade-off between economic cost and risk
- Rate impacts and volatility
- Exposure to market prices
- Non-economic costs and risks, including associated carbon emissions
- Meeting reliability standards
- Difficulties with changing the resource plan
Risk: Importance of Multiple Perspectives

- Standard deviation
- VaR90
- 90th decile
- Loss of load probability (LOLP)
- Resource - load balance
- Incremental cost variation
- Average power cost variation (rate impact)
- Maximum incremental cost increase
- Exposure to wholesale market prices
- Imports and exports

Risk and Expected Cost Associated With A Plan

Risk = average of costs > 90% threshold
Feasibility Space

Increasing Risk

Increasing Cost

Space of feasible solutions

Efficient Frontier

Selection of Resource Plans
Overview

- Planning Principles
- Selection of Resource Plans
- Load Representation
- Treatment of Conservation
Fifth Power Plan Energy

![Graph showing energy trends over years]

Source: worksheet LFAC 081203 01 of Load_Comparison to NPCC 081203.xls

RPM Load and Conservation

![Graph showing load and conservation trends over years]

Source: worksheet LFAC 081203 02 of Load_Comparison to NPCC 081203.xls
Load Futures

Likelihood Deciles
Comparison to Council’s Forecast

Overview

- Planning Principles
- Selection of Resource Plans
- Load Representations
- Treatment of Conservation
Supply Curves

Supply curves

Cost Assuming No Producers’ Surplus

Supply curves
Conservation Supply Curve

Components of Cost Reduction

- Additional conservation at $50/MWh
- SCCT deferral
- Reduced market prices
- Total System Costs
Price-takers Still See Benefits

Additional conservation at $50/MWh

SCCT deferral

Total System Costs

Supply curves

SCCT Deferral

- *Why* does conservation defer single cycle combustion turbines?
 - Low-capital cost resources are the traditional solution for risk management
 - SCCT have low capital cost
 - Conservation has *high* capital cost
- Under what conditions does conservation hold an advantage over SCCTs?
SCCT Deferral

$Net Benefit per $Expense

SCCT Deferral

End