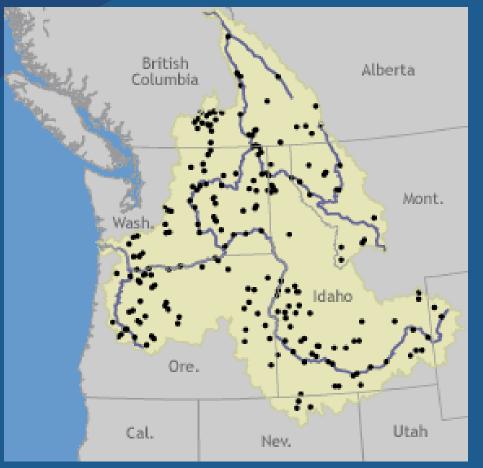
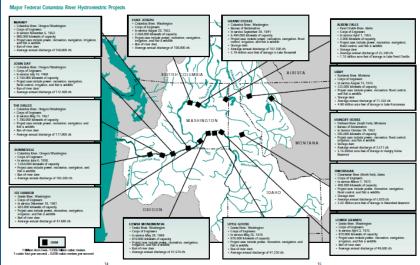
Science, Service, Stewardship

Oregon Archives, Columbia River, Bonneville area, ca. 1915

Eulachon: State of the Science and Science to Policy Forum


August 27, 2015

Robert Anderson Eulachon Recovery Coordinator National Marine Fisheries Service


NOAA FISHERIES SERVICE

FCRPS, Dams, and Water Management in the Columbia Basin and Effects on Eulachon

Columbia River Basin

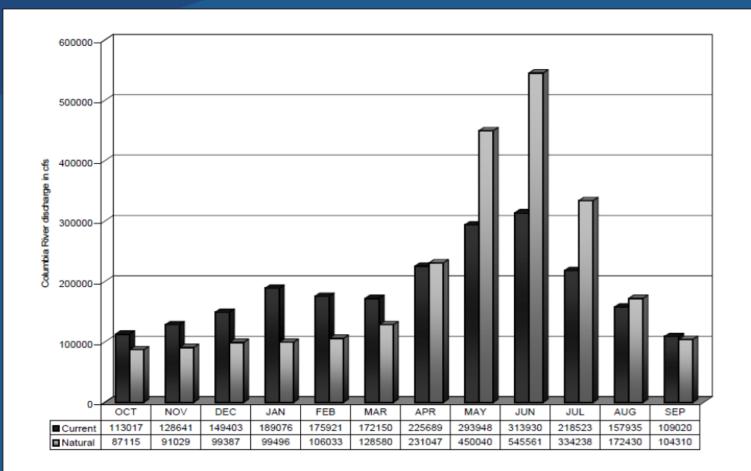
FCRPS

Threats/Limiting Factors/Factors for Decline

Eulachon qualitative threats rankings by subpopulation (BRT 2010), and ESA Section 4(a)(1)(b) Factors.

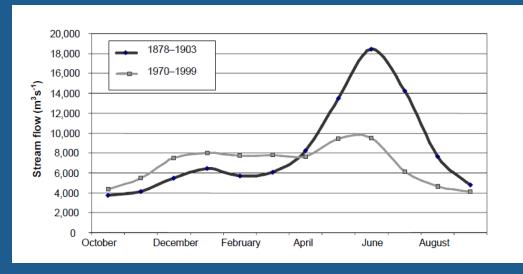
Threats	Klamath	Columbia	Fraser	BC	§4 Factor	
Climate change impacts on ocean conditions	1	1	1	1	А	
Dams/water diversions	2	4	8	11	А	
Eulachon by-catch	3	2	2	2	Е	
Climate change impacts on freshwater habitats	4	3	4	4	А	
Predation	5	7	3	3	С	
Water quality	6	5	5	8	А	
Catastrophic events	7	8	10	5	А	
Disease	8	11	11	7	С	
Competition	9	12	12	9	Е	
Shoreline construction	10	10	9	6	А	
Tribal fisheries	11	14	13	10	В	
Nonindigenous species	12	15	15	13	Е	
Recreational harvest	13	13	14	14	В	
Scientific monitoring	-	16	16	15	В	
Commercial harvest	-	9	6	-	А	
Dredging	-	6	7	12	А	

Eulachon at Bonneville Dam...and Beyond


There have been reports of adult eulachon ascending Bonneville Dam, both before and after construction of Bonneville Dam at RM 146.1, with some runs large enough to support recreational harvest (OFC 1953; Smith and Saalfeld 1955; Stockley 1981).

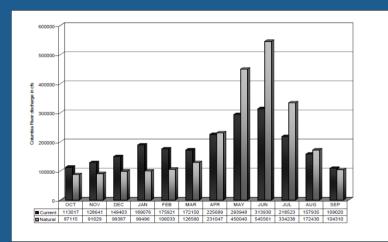
Cascade Rapids, at RM 148.5, was likely a natural barrier to eulachon migration in the Columbia River (OFC 1953). A ship lock constructed at Cascade Locks in 1896 allowed fish to circumvent the rapids and subsequently eulachon were reported as far upstream as Hood River, Oregon at RM 169, and the Klickitat River at RM 180 (Smith and Saalfeld 1955). Following completion of Bonneville Dam, both Cascade Rapids and Cascade Locks were submerged, removing the rapids as a passage barrier.

The Oregonian April 6, 1945—Columbia river smelt somehow have passed Bonneville dam. Lt. Col. Ralph A. Tudor of the United States Army engineers Thursday reported seeing some of the little migrant fish in the pool above the dam, though how they got there he could only guess. A conjecture—and Col. Tudor said it was no more than that—was that the smelt had passed around the dam through the Tanner creek by-pass, built to enable fingerling salmon to escape downstream. It was the first time smelt had been reported above Bonneville dam since 1938, when they passed through an opening left before the dam went into final operation. Millions of smelt Thursday were battling their way upstream through the Bonneville fish ladder on the Washington side of the river, engineers reported, but the vanguard there was only about one-third of the way through the ladder. Engineers reduced the flow of water to give them a better chance.


Eulachon have been documented upstream of Bonneville dam in several years including 1936, 1938, 1945, 1953, 1988 (fall-back estimate of 95,500 eulachon), 2003, 2005, and 2014.

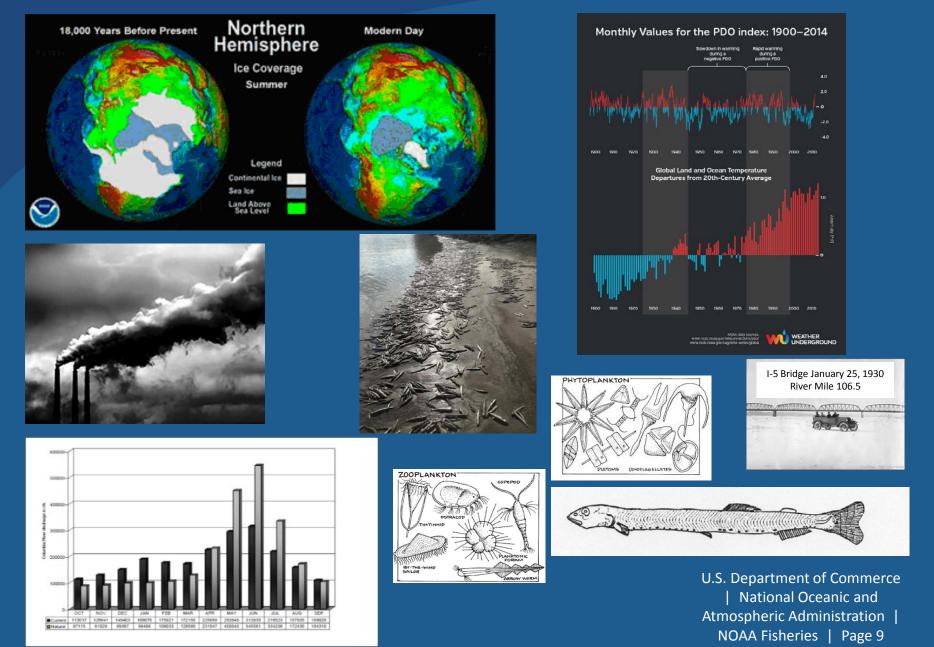
Simulated mean monthly Columbia River flows at Bonneville Dam under current conditions and flows that would have occurred without water development (water years 1929–1978).

Effects of Dams on Eulachon


Columbia River — operation of dams and water withdrawals for irrigation have significantly altered the natural hydrologic pattern of the Columbia River. Flow regulation has shifted the peak spring freshet in the Columbia River such that it occurs approximately 2 weeks earlier now than it did prior to 1900, in addition to a decrease in the magnitude of the spring freshet by approximately 41%. These shifts in flow intensity and timing may result in reduced egg and larval survival of eulachon, which are dependent on precise synchronization with river conditions and subsequent availability of preferred juvenile prey species in the ocean (Gustafson et al. 2010).

Changes in the annual flow cycle of the Columbia River at the Beaver Army Terminal, 1878–1903 versus 1970–1999, Bottom et al 2005.

Simulated mean monthly Columbia River flows at Bonneville Dam under current conditions, flows that would have occurred without water development (water years 1929–1978), Flow Changes and Amounts Attributed to the FCRPS, and Timing Range of Eulachon Life History Events.


Eulachon	Life Stage	Subpopulation		Ja	n	Feb	Ν	Mar	A	or	May	Jun		Jul	Α	ug	Sep	Oct	No	v	Dec		
	Adult Migration ^(1,2)	Columbia River																					
	Spawning ^(1,2,3)	Columbia River																					
	Eggs/Larval (incubation, hatching, downstream-drift) ^(1,2,3)	Columbia River																					
FCRPS Flow C	hange Direction and Amount-cfs ⁽⁴⁾	Increase	Decrease	268	374	20966	5 13	3071	16	07	46828	69489) 3	4715	43	349	1413	7771	112	54	15029		
FCRPS Flow Cl	hange Direction and Amount-Precentage ⁽⁴⁾			27.	0%	19.7%	5 10).2%	0.7	7%	10.4%	12.7%	5 1	0.4%	2.	5%	1.4%	8.9%	12.4	%	15.1%		
									Pea			Peak Flow Perio		ow Period		Period							
(1) LCFRB 2004	4. Lower Columbia Salmon and Steelhead Recovery and Subba	sin Plan. Tech Foundation.																					
(2) Gustafson	et al. 2010. Table A-9.																						
(3) Ramono et	al. 2002																						
(4) NOAA Fishe	eries 2008 - SCA																						
Activity Level -	- Peak																						
Activity Level	- Non-Peak																						

Water Management Effects of the FCRPS on Eulachon

- Water management operations will continue to alter the hydrograph in a manner that increases flows during the fall-winter (October through March), and diminish flows during the spring-summer (April through September). Potential effects: Spawning production, egg incubation, and larval and juvenile growth, development, and survival in the estuary-plume environment.
- Water management operations will continue to alter water quality (increased water temperatures and reduced turbidity), water quantity (seasonal changes in flows and consumptive losses resulting from use of stored water for agricultural, industrial, and municipal purposes.
- Water management operations, especially during the April through July period, a period that coincides with eulachon larval ocean entry and residence timing, is likely to affect the chemical and physical processes of the estuary–plume environment, and therefore may have negative impacts on marine survival of eulachon larvae and juveniles during the freshwater– ocean transition period.
- Changes in flow, as a percent of total discharge attributable to the FCRPS are, overall, substantial, particularly as these effects are long term (decades).

Natural Climate Variability, Anthropogenic-Forced Climate Change, Water Management...and Eulachon

Questions?

of small fish which non begin to care and me Taken in quat quantities in the Eduntia R. about 40 miles above us by means of skinning or according nuts on this page Those norm the likeness of them as large as life; it as perfect as I can make it with my per and well serves to give an general edens of the fish. the rays of the fins are banen but not sharp the semienthat points. the small fin an the back next to the tail has no rays of bones being a here 17140 - becanaus pellicle. the fine and to the gills have elenen rays each. hore of the abdomen have eight each, those 1 the pennemons are 20 and a haff formed in hait that of the back has slever rays. ale. The fins are of a white colour. The back is of a blinch sustry colour and that of The the lower part of the dides and belog is of a silve. . of white no spots on my port. The first bone of the gills next behis the aged is of a bluis cast, and the second of a light goal's volour nearly while the puple of the eye is black and the one of a silver whete. The under jow exceed the upe in The mouth opens to great extent, follows that of the herring . it has no lack . the obsomen is offices and emacth in this Differing from the herring shad anchoring of the Malacaptergians Coon & Claps