

## What's the plan supposed to do?

- What the Northwest Power Act says...a
   REGIONAL conservation and electric power plan
  - Priority to cost-effective 1) conservation 2) renewables 3) high efficiency 4) all other
  - General scheme for implementing conservation and developing resources to meet administrator's load, giving due consideration for:
    - Environmental Quality
    - Compatibility with existing power system
    - Protection, mitigation, enhancement of F&W including sufficient flows



### Requirements

- ◆Conservation program & model standards
- R&D recommendations
- Quantifiable environmental costs and benefits
- 20 year demand forecast
- Forecast of power resources and types needed
- Reserve and reliability requirements and cost-effective means of providing





#### The basis for influence

- Status of the Council
- Advocating policies that will help ensure an adequate, efficient, economic and reliable power system that are:
  - Based on good data and analysis
  - Consistent with the changing nature of the power system
  - Reflect the disaggregated nature of decisionmaking
  - Reflect insights on the important issues affecting the power system





### What's driving our thinking?

- The experience of leading up to and during 2000-2001 and the aftermath
  - An extended period of extreme high power prices that did significant damage to the regional economy



### Why

- Failed market CA market design and market manipulation, yes
- ◆ But also
  - Under-investment in new resources/over-reliance on spot market
  - Onset of poor hydro conditions
  - Slow response of demand to wholesale prices
  - Vulnerability to correlated markets gas and electricity
- Failure to plan adequately for the inherent risk in the system



## Directions for the 5<sup>th</sup> power plan

- Address some of the key policy issues from the 2000-2001 experience
- Provide insights in how to better manage risk through resource choices



### Key Issues

- Adequacy of financial/regulatory incentives for resource development
- Improving the response of retail demand to wholesale prices
- Strategies for investment in energy efficiency
- The value of diversity in the resource portfolio



### Key Issues (cont.)

- Transmission requirements for a wellfunctioning power system
- Fish and Power
  - Improving cost-effectiveness
  - Assuring equitable treatment
- Global Climate change
  - Potential impact on power supply
  - Risks associated with control measures
- Information for assessing resource adequacy and market performance



## Key Issues (cont.) The future role of the Bonneville Power Administration in Power Supply

### Risk....

- The expectation of loss. It is a function of the probability and the consequences of harm.
- •We accept risk in our everyday lives and we routinely pay something to mitigate that risk,e.g. insurance
- Plan must assess risk and costs of mitigating



## Council pioneered treatment of risk

- Early plans focused on:
  - The financial risk associated with capital intensive, long lead time resources arising from uncertainty regarding future demand
  - Financial risk associated with uncertain future fuel prices



# Now: Uncertainty AND Volatility Uncertainty - About future load trends, fuel price trends, market price trends About policy and regulation, e.g., CO2 regulation Technology Variability/volatility – on top of overall trend Hydro, Fuel prices, Market prices, Loads Correlations among the them



| Resource Characteristics and Risk |                            |                    |                    |           |          |
|-----------------------------------|----------------------------|--------------------|--------------------|-----------|----------|
| 4                                 | Application                | Ave Cost re<br>Mkt | Investment<br>Risk | Fuel Risk | CO2 Risk |
| Conservation                      | Non-dsptch<br>Load-flwng   | Low-Mod            | Mod-Hi             | Low       | Low      |
| NGCC                              | Dsptch<br>Baseload         | Mod                | Mod                | Mod-Hi    | Mod      |
| Wind                              | Non-dsptch<br>Intermittent | Mod-Hi             | Mod-Hi             | Low       | Low      |
| Spot Market                       | Dsptch                     | + 1                | Low                | Mod-Hi    | Mod      |
| Coal                              | Dsptch<br>Baseload         | Mod-High           | Mod-Hi             | Low-Mod   | High     |
| Demand<br>Response                | Peak shave or Long-term    | Low-Mod            | Low-Mod            | Low       | Low      |















# Where in the process? (2) Portfolio model (Olivia) Structure ✓ Underlying data correlations ✓ Beginning calibrations ✓ Testing portfolios – Sept - Oct



# Issue Analysis (2) Strategies for investment in efficiency Portfolio analysis Sept-Oct Value of diversity Portfolio analysis Sept-Oct Transmission Draft issue paper discussed by P4 Decision - Oct







### What you should expect

- Fairly intensive engagement with plan issues and analysis in the Oct – Dec period
- Draft plan to you in Jan
- Public review late winter/early spring
- ◆ Final Spring '04

