Conservation Resource Potential in the 5th Power Plan

Economically Achievable Potential
And
Total Resource Costs
April 8, 2004

Focus of Today's Presentation

- Size of the conservation resource
- Cost of the conservation resource
- Major sources of resource potential
- Implications for resource portfolio
- Implications for Action Plan

Size of Conservation Resources

- Cost effective & achievable potential = 2800 MWa by 2025
- Remaining Potential Equivalent to Regional Accomplishments 1980 - 2001
- Annual Acquisitions = 150 MWa per year could meet half of "medium" forecast load growth

Caveat:

- These findings represent a <u>point</u> <u>estimate</u> for cost-effectiveness based on a single forecast of future market prices
- The Plan's Conservation Resource acquisition targets will be based on the results of the portfolio analysis which considers a wide array of future market prices and risks

Cost of Conservation

- About 2.4 cents per kWh levelized on average
- Up to 8.9 cents per kWh cost-effective depending on shape
- Mostly capital cost, about \$350-400 million per
 year on a Total Resource Cost basis (TRC)
- Includes non-energy benefits and costs

Cost and Achievable Potential by Sector and End Use

New and Improved Technologies

- New technology and/or lower cost of existing technologies
 - High performance T8 lighting, control optimization, compact fluorescent lighting
- New applications
 - Sewage treatment, LED traffic signals
- New end uses evaluated
 - Network PC control
 - AC/DC power converters
 - Commercial refrigerators, freezers, ice-makers

Revised Existing Measures

- Changing costs
 - CFLs lower, Commissioning higher
- Higher avoided costs for some measures
 - Air conditioning measures now 8.9 cents/kWh
- Many previous measures removed due to new codes & standards
 - Refrigerators, freezers, clothes washers, AC
- Technology improvements
 - Residential heat pumps for space & water

Process for Estimating Conservation Resource Potential

- About 150 measures considered in 100's of applications (T-8 lighting in schools, offices, retail, etc.)
- Estimate costs, applicability, baseline penetration
- Estimate savings: energy, T&D impacts, measure interaction and non-energy benefits
- Benefit/Cost ratio > 1.0 means cost-effective
- De-rate technical potential by 15% to reflect what is "Realistically Achievable" through programs, codes & standards, market transformation and other mechanisms

Estimating the Resource: Costs

- Measure capital
- Labor and profit
- Net ongoing O&M (positive or negative)
- Incremental over base case
- Program administration costs added
- Total Resource Cost Perspective =
 - All costs regardless of who pays

Estimating the Resource: Savings

- Energy (kWh) by time of day and month
 - Based on AURORA™ base case Mid-C prices
- Capacity (kW) for T&D deferral
 - Based on coincidence with PNW peak kW (January)
- Based on forecast of applicable "stock"
 - Number of widgets, floor area, population
- Account for interaction between end uses
 - Lighting measures influence heating and cooling needs
- Account for overlap between measures
 - Day lighting applied after lighting power density

Adjustments Since Last Plan

- Reflect new codes & standards
- Reflect conservation achieved
- Incorporate new base line data
 - Commercial Building Stock Assessment
 - Penetration of existing programs (E-Star)
 - Census data, utility data, economic data
- Higher Avoided Costs
- New Technology

Historical Conservation Savings

Summary of Major Changes Effecting Regional Conservation Potential

Factor	Decrease MWa	Increase MWa
Utility Program Acquisitions	600	0
Regional Market Transformation Actions	170	0
New/Revised Federal Standards	730	0
Higher Avoided Cost	0	767
Technology Improvements	0	1240

Total Residential Sector Cost-Effective Potential - 1475 aMW

- **Water Heatering**
- **Space Conditioning**
- Lighting

Residential Sector Conservation Achievable Resource Potential by Major End Use

Annual Residential Sector Acquisitions 2005 to 2010

Commercial Sector Technical, Economic and Realistically Achievable Potential (Medium Forecast - 2025)

Commercial Sector Realistically Achievable Potential by Major End Use (Medium Forecast – 2025)

Industrial Conservation

- Still a placeholder estimate
- Estimate of 5% of forecast loads
- 350 MWa at 1.7 cents per kWh
- Process controls, drive systems, lighting, refrigeration

Irrigated Agriculture Sector Technical, Economic and Realistically Achievable Potential (Medium Forecast - 2025)

Levelized Cost (Cents/kWh)

Regional Conservation Resource Potential "Supply Curve"

Cost-Effective and Achievable Conservation Could Meet Over 10% of "Medium" Forecast PNW Loads in 2025

- Non-DSI Industrial Sector 350 aMW
- Commercial Sector Non-Building Measures 430 aMW
- HVAC, Envelope & Refrigeration 375 aMW
- New Commercial Building Lighting 220 aMW
- Existing Commercial Buildings Lighting 130 aMW
- Residential Space Conditioning 240 aMW
- Residential Lighting 530 aMW
- Residential Water Heating 325 aMW
- Residential Appliances 140 aMW

Annual Total Economic Resource Potential

Annual Total Resource Acquisition Cost

To Meet Council Plan Targets Regional Conservation Investments Will Have to Increase Significantly or Be More Efficient

Summary

- It's big Over 2800 MWa
- It's cheap ~ 2.4 cents/kWh
- It's new "stuff" and improved "old stuff"
- It's half lost opportunity
- It's nearly all capital
- It's going to require more money at a time when utilities are faced with the bad politics of rate increases
- It's a "point estimate"
- Olivia is using this supply curve to test the value of developing more or less conservation resources

Backup slides

Figure 5
Hour Load Profile for Residential Central Air Conditioning
Water Heating and Space Heating Conservation Savings

Figure - 6 Forecast Levelized "On" and "Off-Peak" Wholesale Power Market Prices for

January and August at Mid C

Figure 7
Market Price and Savings for Residential Space Heating and Central Air Conditioning Conservation Saving

Estimating the Resource: Sources of Measures

- Last Council Plan
- National Labs, USDOE, ACEEE, E-Source
- BPA, utilities, NEEA, Energy Trust
- Regional Technical Forum
- Other regional & national assessments

Estimating the Resource: Analytical Conservatisms

- Currently Available technologies & practices
 - i.e., No savings from technologies "from the future"
- Measure applicability screening
 - e.g., heat pump water heaters excluded from Multifamily buildings
- Interactions between measures
 - e.g., more efficient lighting, less air condition, but more heating
- Code or better base case
 - e.g., accounts for 2006 federal standards, Energy Star market share, etc.
- All non-energy costs and benefits, to the extent quantifiable
- Multiple data sources considered, conservative values chosen

Residential Lighting, Appliance and Water Heating Technical Potential

Levelized Cost (Mills/kWh 2000\$)

Residential Lighting, Appliance and Water Heating Economic Potential

Residential Space Conditioning Technical Potential

Residential Space Conditioning Economic Potential

Levelized Cost (Mills/kWh 2000\$)

- PTCS Duct Sealing, Commissioning and Controls
- SGC Multifamily Homes
- PTCS Duct Sealing
- PTCS Duct Sealing and System Commissioning
- SGC Single Family Homes
- SGC Manufactured Homes
- Weatherization Manufactured Home
- Weatherization Multifamily
- Weatherization Single Family
- Heat Pump Upgrades
- Heat Pump Conversions

Residential Sector Technical, Economic and Realistically Achievable Space Conditioning Conservation Potential (Medium Forecast - 2025)

Residential Sector Conservation Potential

Residential Sector Technical, Economic and Realistically Achievable Conservation Potential (Medium Forecast - 2025)

Commercial Sector Realistically Achievable Retrofit Potential (Medium Forecast – 2025)

Commercial Sector Realistically Achievable Lost Opportunity Potential (Medium Forecast – 2025)

Commercial Sector Realistically Achievable Non-Building Potential (Medium Forecast – 2025)

Commercial Sector Non-Building Resources Total Realistically Achievable Potential (Medium Forecast – 2025)

Commercial Sector Lost Opportunity Resources Realistically Achievable Potential (Medium Forecast – 2025)

Lost Opportunity Potential C

Change in Market Share of High, Medium and Low Pressure Center Pivot Irrigation Systems 1994 to 1997

Realistically Achievable Conservation Resource Potential in Irrigated Agriculture

