Finishing the Plan

Status

- 1) Executive Summary and Action Plan -- Outline complete
- 2) Introduction -- Draft to PA for editing
- 3) Where does the region stand (current status of the power system) -- Draft to PA for editing
- 4) Resource alternatives and characteristics -
 - a) Demand side
 - i) Conservation -- Draft to PA for editing
 - ii) Demand Response -- Draft to PA for editing
 - b) Supply side (generation) -- in process
- 5) A brief description of the treatment of risk in the Plan -- **Draft to PA for editing**
- 6) Portfolio Analysis -- in process
 - a) The recommended plan
 - i) Develop approximately XX MW per year of conservation costing up to a total levelized cost of YY (higher cost conservation may be justified depending on shape of savings, see....)
 - ii) Identify the size and cost of the demand response resource and put in place the necessary policies and programs necessary to implement by 2008
 - iii) Be prepared to begin or resume construction of the following types and amounts of generation on the following schedule:

Resource	Characteristics	2006	2008	2010	2012	2014	2020
Gas	High efficiency, moderate						
CCCT	capital cost, moderate lead time,						
	moderate-high fuel cost.						
	Moderate CO2 production,						
Gas SCCT	Moderate efficiency, low capital						
	cost, short lead time, high fuel						
	cost. Moderate-high CO2						
	production.						
Coal	Moderate efficiency, high capital						
	cost, long lead time, low fuel						
	cost. High CO2 production						
Wind	High capital cost, short lead time						
	if adequate transmission						
	available, zero fuel costs,						
	intermittent. NO CO2						
	production.						

iv) Assess need for and implement transmission upgrades necessary to bring recommended resources to load. Preliminary analysis suggests that...

DRAFT DRAFT DRAFT

- v) Maintain regional adequacy standard of XXYYZZ (defined as), i.e. make resource decisions so as to maintain this adequacy standard
- b) Representative development under alternative futures (Charts showing development of resources, net present value cost, utilization of DR)
 - i) Future 1
 ii) Future 2
 iii) Future 3

 "Typical"
 futures
 - iv) Future for which plan performs best
 - v) Future for which plan performs least well
- c) Comparison of preferred plan with alternative plans (Expected Cost, Risk Measure)
 - i) Effect of alternative levels of adequacy standards -- the cost-risk trade-off (expected cost, risk measure)
 - ii) Limited conservation (limit to market price) → Value of conservation
 - iii) Demand response
 - (1) limited demand response

 Value of demand response
 - (2) Demand response costs more
 - iv) Renewables
 - (1) Limited renewables → value of renewables
 - (2) Sustained orderly developments (i.e. sustained development of X MW/year)
- d) Sensitivity Testing -- effects on plan makeup, cost, risk of:
 - i) Persistent high natural gas prices (shift the distribution upward)
 - ii) Sensitivity to electricity market price volatility (reduced magnitude, frequency, duration of jumps)
 - iii) Climate change policy
 - (1) Certain No climate change mitigation (Carbon tax = 0)
 - (2) Certain climate change mitigation, e.g. McCain-Lieberman (MIT study p17)
- e) Identify "Red Flag" events or developments what would make us re-evaluate or refocus the plan
- 7) Resource adequacy -- Issue Analysis, conclusions and recommendations -- *in process*
- 8) Conservation implementation -- Issue Analysis, conclusions and recommendations -- *in process*
- 9) Demand response -- Issue Analysis, conclusions and recommendations -- in process
- 10) Climate change risk mitigation, the role of renewable resources -- Issue Analysis, conclusions and recommendations -- *in process*
- 11) Transmission issues and requirements -- Issue Analysis, conclusions and recommendations -- *in process*
- 12) Fish and Power -- Issue Analysis, conclusions and recommendations -- in process
- 13) The future role of Bonneville *in process*

DRAFT DRAFT DRAFT

Appendices

- A. Demand Forecast -- Draft to PA for editing
- B. Fuel Forecast -- Draft to PA for editing
- C. Conservation Resource Assessment in process
- D. Demand Response Assessment in process
- *E.* Generation Resource Assessment *in Process*
- *F.* Market Price Forecast *to PA for editing*
- *G.* Description of the Portfolio Model *in process*
- H. Climate Change -- in process
 - a) State of the Science
 - b) Potential impacts to the power system and to fish and wildlife

Where to from here:

- 1. Drafts of remaining main sections to power Committee by June meeting
- 2. Finalize for July meeting

 $q:\label{plan-plan-plan} q:\label{plan-plan-plan-plan} do constraints of the plan. The plan is the p$