## Grant PUD Renewable Energy

A Study of Wind Integration by a Small Public Utility District

Presented by Kevin Conway



## Overview

- Grant PUD Resources
- Generation Characteristics
- Statistical Analysis
- Shaping Services
- System Constraints
- What's Next

## Who Is Grant County PUD?

- Own & Operate the Priest Rapids Project
  - 2 approx 1,000 MW each Hydro Developments
  - GCPD Capacity 966 MW
- Project is in the FERC relicensing process
- Approx 42,000 customers
  - 579 MW summer peak
  - 520 MW winter peak
- 15.9 MWs Small Hydro
- 32 MWs Diesel Generation



## Nine Canyon Wind Project

#### 49 Turbines

1.3 MW each Turbine63.7 MW Generating Capacity

## Located near Kennewick, WA 10 Project Participants

Benton County PUD, Chelan County PUD, Douglas County PUD, Grant County PUD, Grays Harbor County PUD, Lewis County PUD, Mason County PUD #3, Okanogan County PUD, Cowlitz County PUD, Columbia Generating Station

First Electricity Produced: 6/02

**Commercial Operation: 9/02** 

**Grant Share: 18.88% (12MWs)** 



# Other Renewable Opportunities Grant PUD is exploring

- Incremental Hydro Improvements
- Low impact Hydro
- Biomass and Digesters
- Wind Development
- Solar Projects



# Characteristics of Thermal and Hydro Generation

- Positive Attributes
  - High Predictability
  - Dispatchable
  - Can be scheduled to meet firm load
  - Provides Ancillary Power Support
  - Ramping Ability
- Negative Attributes
  - Start Up Costs
  - Fuel Costs



# Characteristics Wind and Solar Generation

- Positive Attributes
  - Some Predictability
  - No fuel costs
  - Low start up costs, but new information indicates that they may be more significant
- Negative Attributes
  - Not Dispatchable
  - Can't be scheduled to meet firm load
  - Uncontrolled Ramping
  - Provides Little Ancillary
     Power Support



#### Interests of Utilities and Wind Plants

- Utility / Load Serving Entity
  - Serves load
  - Match load requirements with generation
  - Reliable operation
  - Minimize costs to rate payer
     OR Maximize return to investor
- Wind Plant Owner
  - Economic objective: sell energy to system
  - Clean, affordable energy
  - Long-term price stability



## Wind as Negative Load

- Wind and Load share many similar characteristics
  - Hourly Predictability
  - Ramping
  - Reactive Power
  - Dispatchability
  - Non-conformity to market structure



## Needs for a Control Area to Integrate Wind

- Good interconnection agreement that provides for:
  - Reserves
  - Regulation
  - Voltage support
  - Accurate wind forecasting and data
  - Scheduling and Energy Imbalance
  - Cost Recovery



## Wind Regulation Concerns

- Load Following Vs. Regulation
  - Small project
    - Volatility of generation is high impact
    - Ramping from 0 to 100% is low impact
    - Regulation is difficult
  - Large project
    - Diversity across project seems to reduce volatility to generation output
    - Ramping from 0 to 100% is high impact
    - Load Following is difficult



## Looking at the Statistics

- Historic statistical evaluation is a good tool when looking at wind integration
- Statistical evaluation doesn't tell the whole story.



## Statistical Dispersion







## Statistical Dispersion with Purpose







## What's The Difference?



## TYPICAL DAY HOURLY LOAD SHAPES, November



#### **Week in November**



#### **Nine Canyon Output**



# Transmission and Scheduling Concerns

- Market allows for 1 hour transmission requests
- Schedules are based on clock hours
- Power sales are based on HLH and LLH, and structured products
- Wind ramps outside of established 1 hour blocks
- Transmission penalties exist for the unauthorized use of transmission



## The Need for Shaping Services 2001to 2004

- The Nine Canyon project needed subscribers for the project to move forward
- Grant developed a shaping service at the request of three smaller purchasers
- Grant Integrated 18 MWs of Nine Canyon Output
- BPA offered the a similar service in 2004



## What Was Learned

- Grant was able to successfully integrate 18 MW
- 18 MW to Grant's system is equivalent to approximately 660 MW in the Northwest Federal System
- Grant was able to do this even though one of Grant's two major hydro projects faces severe constraints







# Constraints on Providing Services

- Non Power Requirements can substantially reduce a hydro project's ability to supply shaping and storage services
- Priest Rapids Dam has a rated capacity of 955 MW, and yet this hydro project often has little to no ability to offer shaping services.



## Major Hydro Constraints

- Reverse Load Factoring
- Protection Level Flows
- Rearing Period Operations
- Total Dissolved Gas (TDG)
- Recreation
- Flood Control



## Reverse Load Factoring

- Flows are highly limited during daylight hours
- This is done to encourage Salmon to spawn at lower elevations
- Mid October to Late November





### Protection Level Flows

- High minimum discharge must be maintained
- The minimum flow is equal to the weekly average flow and limits the projects ability to vary output
- Generally November to mid April







## Rearing Period

- Flow fluctuations are limited to avoid stranding
- Priest Rapids may only be able to vary the output by 50 MW per day though rated capacity is 955 MW
- Generally mid March to June



## **Grand Coulee and Priest Rapids Total Discharge Minimum Protection Flow of 70 kcfs at Priest Rapids**



### What Is Next?

- NREL and Grant PUD are completing a study of how best to integrate wind power
- Grant PUD believes renewable energy is viable and supports its continued development
- No one type of renewable energy is the answer, a mixed portfolio of generation is best
- Additional focus needs to be placed on renewable energy that adds predictability and dispatchable capacity to the system
- Grant is proud to have pioneered the way in developing and supplying wind storage and shaping services in the Northwest



## Thank You

