W. Bill Booth Chair Idaho

James A. Yost Idaho

Tom Karier Washington

Dick Wallace Washington

Bruce A. Measure Vice-Chair Montana

Rhonda Whiting Montana

Melinda S. Eden Oregon

Joan M. Dukes Oregon

July 2, 2009

MEMORANDUM

TO: Council members

FROM: Jim Ruff -- Manager, Mainstem Passage and River Operations

SUBJECT: Presentation on U.S. Bureau of Reclamation's experience with invasive mussels in the West

Background

Quagga mussels (Dreissena bugensis) were first detected in the western United States at Lake Mead in January 2007. Within two years, this destructive aquatic invasive species has spread into the states of Nevada, California, Arizona, Utah and Colorado. These western states now face implementing multimillion-dollar control and mitigation programs to protect their water systems, irrigation and hydropower infrastructure. Moreover, these invasive mussels, which can be unknowingly spread by contaminated recreational watercraft, are getting closer and closer to Columbia basin waters. Currently, only eight states in the western U.S. do not have either species of Dreissena mussels (zebras or quaggas), including the four Pacific Northwest states.

The State of Idaho has stated that, should invasive mussels enter Idaho waters, the adverse impacts would be extreme -- affecting drinking water, irrigation, hydropower and recreational pursuits such as fishing and boating. Idaho has estimated recently that to try to control these mussels, should they become established in state waters, would cost the state roughly \$100 million annually.

In addition, the Corps of Engineers (the Corps) has estimated recently that, should invasive mussels become established in Lake Tahoe, Nevada, it could cost that area's tourism-dependent economy more than \$22 million per year. Similarly, a 2005 report by the Pacific States Marine Fisheries Commission (PSMFC) found the cost for installing invasive mussel control systems at mainstem Columbia-Snake river hydroelectric projects could range from the hundreds of thousands of dollars to over a million dollars per facility. That report estimated the cost for a hypothetical Dreissena mussel mitigation strategy, based on two response scenarios (a sodium

hypochlorite¹ injection system and use of anti-fouling paint), at 13 selected federal hydropower projects in the Columbia Basin would be over \$23.6 million.

Council Meeting Presentation

Mr. Fred Nibling, Jr. is a research botanist in the Ecological Research and Investigations Group of the Technical Service Center for the U.S. Bureau of Reclamation in Denver. He will present the latest information to the Council about the Bureau's experiences in controlling zebra/quagga mussels in the West, and in particular, the Colorado River (at Hoover Dam and Lake Mead). His main talking points will address mussel impacts and threats (to hydropower facilities, fish screens and irrigation intakes); ongoing research and development efforts to control invasive mussels; boat inspections; and the costs of these efforts.

There is considerable regional interest in this presentation. I expect representatives from the federal action agencies, NOAA, USFWS, the states, regional utilities and utility groups, and aquatic nuisance coordinators to be in attendance to hear this discussion.

¹ The use of sodium hypochlorite as a tool to control invasive mussels at mainstem Columbia-Snake river hydropower dams could be problematic due to the expense for the chlorine and buffering system as well as the environmental scoping that would need to be undertaken as required by NEPA and the Endangered Species Act protections and requirements for listed salmonids.

RECLAMATION Managing Water in the West

Invasive Mussels in Reclamation Water Systems

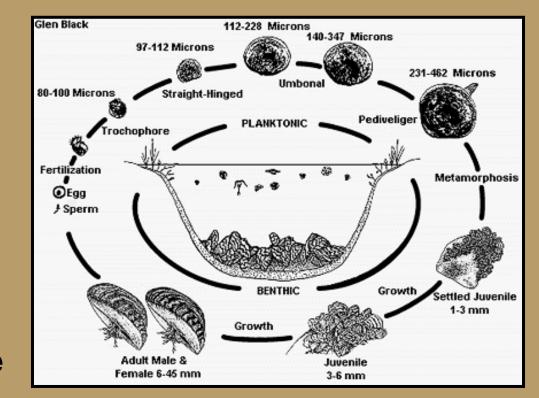
U.S. Department of the Interior Bureau of Reclamation

Zebra vs. Quagga

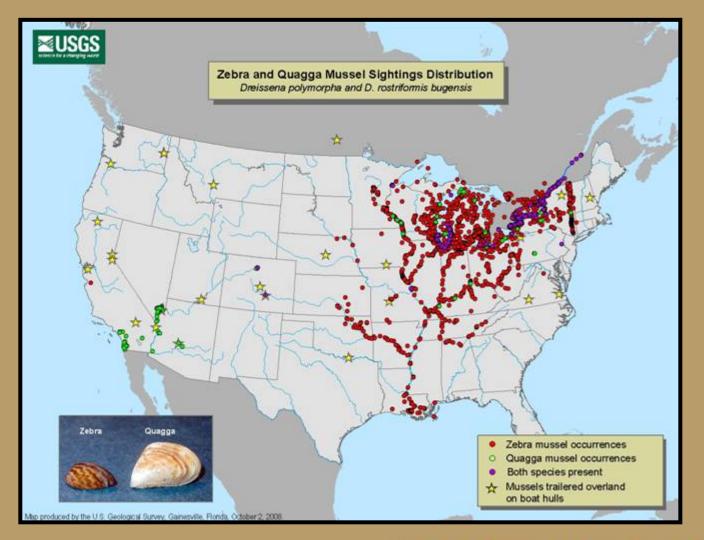
Dreissena polymorpha (Zebra mussel) (Actual size = 15 mm) Dreissena rostriformis bugensis (Quagga mussel)

(Actual size = 20 mm)

Sits flat on ventral side Triangular in shape


Color patterns vary

U.S. Geological Survey


Will not sit flat on ventral side, topples over Rounder in shape Dark concentric rings on shell Paler in color near the hinge

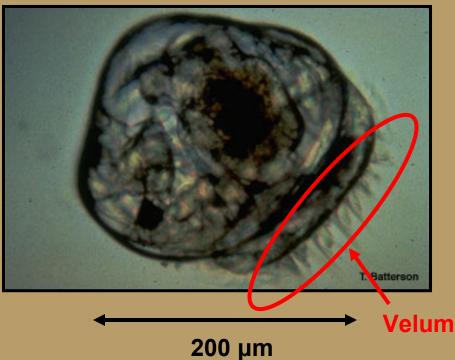
Why are They Problem Species?

- Non-native
- Broad environmental tolerances
- Reproduction
 - Early sexual maturity
 - High fecundity (30 thousand eggs/cycle)
 - Good dispersal mechanism
- Epifaunal mode of life

Current Distribution – Oct. 2008

How Do They Spread?

- Adults Attached to Movable Surfaces
 - Boat Hulls
 - Dirty Anchors, etc
 - Aquatic Plants
- Being Carried by Water Currents
 - Natural Water Courses
 - Man-made Conveyances


Cleaning Quagga mussels on Houseboat

RECLAMATION


Lake Mead – Mar. 2009

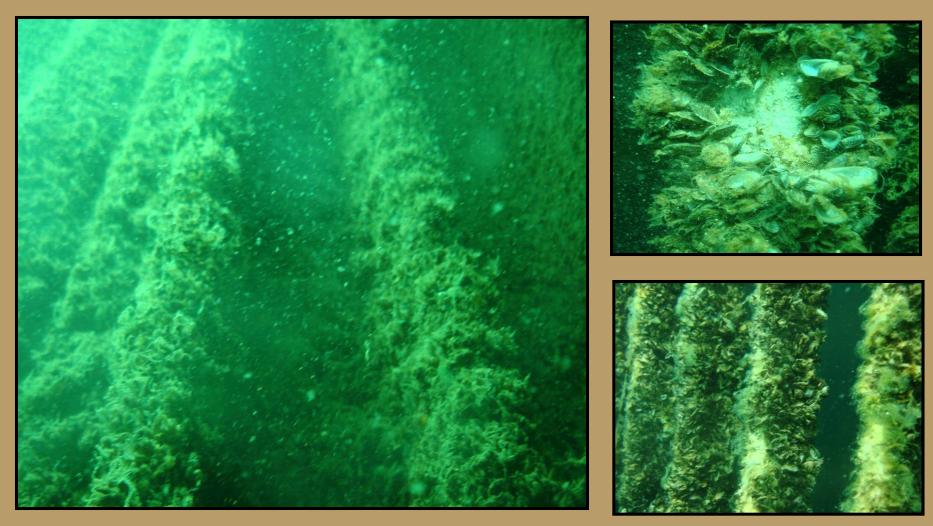
How Do They Spread?

- Attached to Movable Surfaces
 - Boat Hulls
 - Dirty Anchors, etc
 - Aquatic Plants
- Larvae Being Carried by Water Currents
 - Natural Water Courses
 - Man-made Conveyances

Davis Dam Spillway Gate

Flow restriction

- Roughening (Friction loss)
- Blockage
- Chemical degradation
- Mechanical Damage
 - Abrasion
 - Lifting coatings when removed


Biological/Environmental

- Food chain
- Habitat damage
- Water quality
- Water resource industry
- Toxic accumulations

Intake Trashracks – Davis Dam

Trashracks – Hoover Dam

Penstocks – Hoover Dam

Dead Mussel Debris in Cooler Unit – Ontario Hydro

Flow restriction

- Roughening (Friction loss)
- Blockage

Chemical degradation

- Mechanical Damage
 - Abrasion
 - Lifting coatings

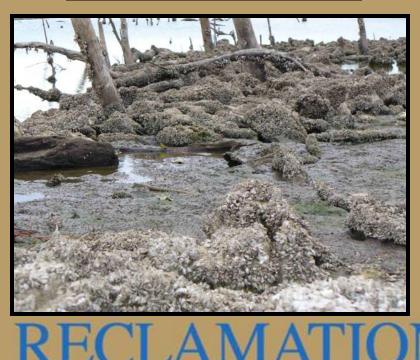
Biological/Environmental

- Food chain
- Habitat damage
- Water quality
- Water resource industry
- Toxic accumulations

Flow restriction

- Roughening (Friction loss)
- Blockage
- Chemical degradation
- Mechanical Damage
 - Abrasion
 - Lifting coatings when cleaned

Biological/Environmental


- Food chain
- Habitat damage
- Water quality
- Water resource industry
- Toxic accumulations

Flow restriction

- Roughening (Friction loss)
- Blockage
- Chemical degradation
- Mechanical Damage
 - Abrasion
 - Lifting coatings when removed
- Biological/Environmental
 - Food chain/Fisheries
 - Habitat damage
 - Water quality
 - Fish passage and protection
 - Toxic accumulations

Substrate Preference

Least preferred (top) to more preferred (bottom)

- Copper
- Galvanized Iron
- Aluminum
- Acrylic
- PVC
- Teflon
- Vinyl
- Black Steel
- Polypropylene
- Asbestos
- Stainless Steel
- Concrete

Source - Kilgour and Mackie, 1993

Kerr Lock and Dam (COE), Tulsa OK

Control Methods Available

Source: ZM Control Handbook - Corps of Engineers

Preventive

- Repellents (Antifouling, Foul-release, and Thermal Spray Coatings)
- Thermal Treatments
- Mechanical Filtration

Reactive

- Mechanical Cleaning
- High-pressure Water Jet Cleaning
- Carbon Dioxide Pellet Blast Cleaning
- Freezing/Desiccation (Thermal)
- Backwash of Water Supply Piping
- Biocides

(continued on next slide)

Control Methods, cont'd

Source: ZM Control Handbook - Corps of Engineers

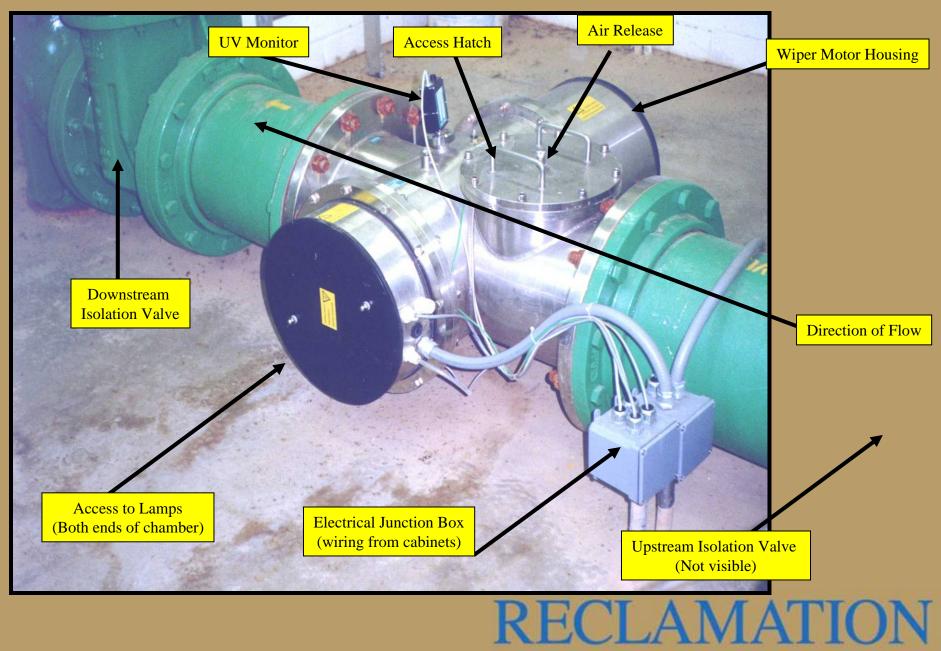
Redesign

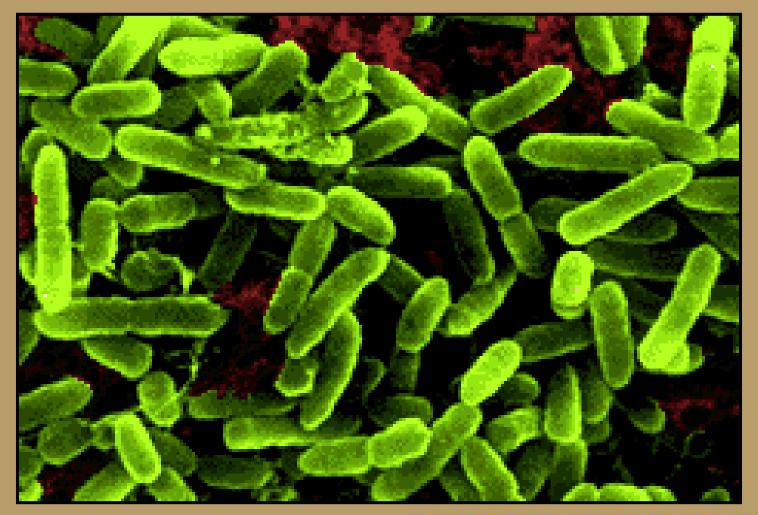
- Water intake retrofit
- Infiltration intakes
- Acoustics
- Electric Fields
- Ultraviolet (UV) Light

BSF - 40 MICRON SELF CLEANING FILTER

Self Cleaning Filter at Parker Dam Power Plant

Evaluating Coatings to Prevent Mussel Attachment


Untreated after 7 months


Nontoxic Foul Release Coated

In Line Pipeline UV Installation

Emerging Options – *Pseudomonas flourescens*

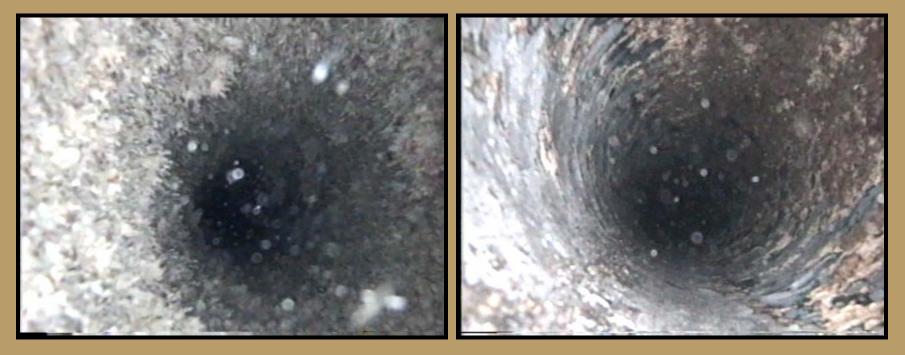
Emerging Options

- Bacterial product (Developed at NY State Museum and commercially developed by Marrone Organic Innovations), zebra mussel specific chemical....being tested on Quagga now
- How does it work?

The bacteria produce natural compounds that kill the mussels when ingested. It destroys the mussels' digestive system.

New York State Museum

Water Jetting Equipment



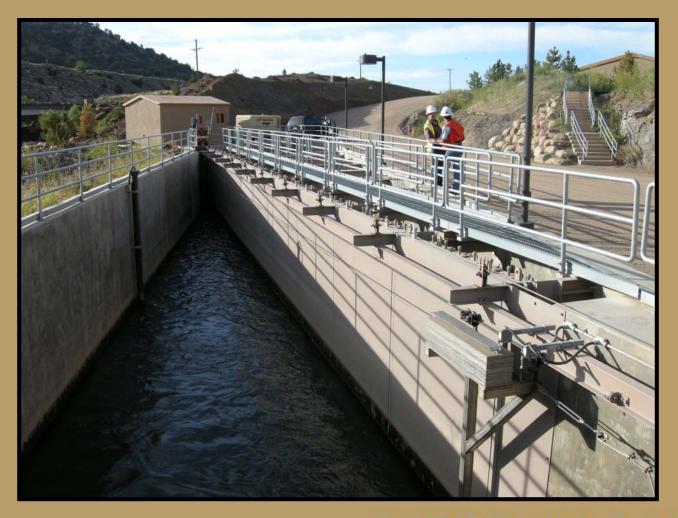
Pressure Wash - Domestic Water Pipe at Davis Dam

Before

Impacted Systems

Piping	Circulating water systems	Service water systems
Traveling screens	Once through	Pumps
Water towers	Pumps	Piping
Trash racks	Piping	Raw water makeup
Trash bars	Condenser water boxes	Heat exchangers
Forebays	Condenser tubes	Emergency systems
Holding ponds	Fire protection systems	Area coolers
Storage tanks	Main pumps	Seal water systems
Wet wells	Jockey pumps	Strainers
Pump wells	Submerged pumps	Drag valves
Pump suction chambers	Intake structures	Makeup demineralizers
Lift pumps	Intake screens	Circulation systems
Pump bell housings	Intake tunnels	Emergency water systems
Screen wash systems		

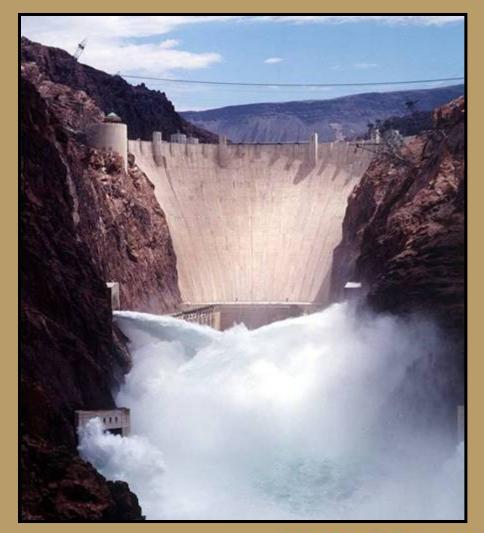
Special Considerations


Instrumentation

Fish Protection Facilities, PNR

Animas-La Plata Fish Screen

Evaluating Mussel Fouling Potential of Cu-Ni Fish Screen Material (4 mo)



Conclusions

- Western watersystems differ from eastern:
 - Long, continuously managed reaches of flowing water
 - Systems designed for water dispersal
- Structures often lack designs and management plans to contend with quaggas and zebras
- New issues and problems are apparent requiring new management techniques

Questions?

