Bill Bradbury Chair Oregon

Henry Lorenzen Oregon

W. Bill Booth Idaho

James A. Yost Idaho

Jennifer Anders Vice Chair Montana

> Pat Smith Montana

Tom Karier Washington

Phil Rockefeller Washington

April 29, 2014

MEMORANDUM

TO: Council Members

FROM: Charlie Black, Power Planning Division Director

SUBJECT: McCullough Research Study of Columbia Generating Station

In early 2013, the Physicians for Social Responsibility retained Robert McCullough to evaluate the future cost-effectiveness of continuing operation of the Columbia Generating Station. Mr. McCullough is a well-known energy and economic consultant based in Portland.

The results of McCullough's <u>study</u> of the economics of the Columbia Generating Station were published in December 2013. The study concludes that operating and maintaining CGS on an ongoing basis would be more costly than closing the plant and replacing it with firm power supplies procured from the wholesale market.

At the Council meeting in Boise on May 6, 2014, Mr. McCullough will provide a summary of his study, including the approach, assumptions and conclusions. He will also be available to respond to questions from the Council.

Economic Analysis of the Columbia Generating Station

May 6, 2014

Robert McCullough McCullough Research

Kenneth W. Cornew, CEO of Exelon

"The economic viability of these highly reliable, low-carbon generation sources is at risk, not because they can't compete in the marketplace, but because they can't compete when the playing field is uneven."

Print Story

Why Exelon will unload its nuclear plants

By Joe Cahill May 02, 2014

A hardened cold warrior thawed U.S. relations with China. A pain-feeling Democrat ended welfare as we knew it.

And a nuclear engineer just set the stage for Exelon Corp. to exit the nuclear power business.

CEO Christopher Crane's agreement this week to **acquire Washington's Pepco Holdings Inc.** for \$6.8 billion would shift Exelon's center of gravity decisively toward regulated utility operations and away from the fleet of nuclear power plants that has been the centerpiece of company strategy for the better part of two decades under Mr. Crane and predecessor John Rowe. If the Pepco acquisition proceeds as planned, Exelon would get well over half its profit from utility ratepayers in Illinois, Pennsylvania, Maryland and the District of Columbia. A far smaller share will come from nuclear operations that once generated as much as two-thirds of corporate earnings.

The deal speaks volumes about Mr. Crane's view of the **nuclear business he oversaw** before succeeding Mr. Rowe in 2012. Since taking over, he has largely stuck to the nuclear-focused script penned by his predecessor, assuring Wall Street that depressed electricity prices squeezing profits in the nuclear unit will rise in the not-too-distant future. But prices remain stubbornly low, as expanding natural gas supplies reduce costs at gas-fueled electric power plants.

Kewaunee

- Dominion Resources
- Closure based on economics
- Spent fuel is approximately one third of the decommissioning expense

Geography

- Courtesy of FDR, Portland is the hub of the west coast
- Mid-Columbia Hub
- Recent generation changes

Mid-Columbia Geography

Prices

- Wholesale prices outside of California are set by an open market
- California adopted an administered market where the prices are set by an administrative agency
- This is one reason why Mid-Columbia prices are so much lower than California's

Mid-C and Henry Hub Prices

The U.S. Has 100 Operating Nuclear Reactors

- Of these 100, only 6 are remaining on the west coast
- One is in the Pacific Northwest
- There is little understanding of the economics of these units beyond the high cost of construction

U.S. Energy Information Administration

		U.S. average levelized costs (2012 \$/MWh) for plants entering service in 2019								
Plant type	Capacity factor (%)	Levelized capital cost	Fixed O&M	Variable O&M (including fuel)	Transmission investment	Total system LCOE	Subsidy ¹	Total LCOE including Subsidy		
Dispatchable Technologies										
Conventional Coal	85	60.0	4.2	30.3	1.2	95.6				
Integrated Coal-Gasification Combined Cycle (IGCC)	85	76.1	6.9	31.7	1.2	115.9				
IGCC with CCS	85	97.8	9.8	38.6	1.2	147.4				
Natural Gas-fired										
Conventional Combined Cycle	87	14.3	1.7	49.1	1.2	66.3				
Advanced Combined Cycle	87	15.7	2.0	45.5	1.2	64.4				
Advanced CC with CCS	87	30.3	4.2	55.6	1.2	91.3				
Conventional Combustion Turbine	30	40.2	2.8	82.0	3.4	128.4				
Advanced Combustion Turbine	30	27.3	2.7	70.3	3.4	103.8				
Advanced Nuclear	90	71.4	11.8	11.8	1.1	96.1	-10.0	86.1		
Geothermal	92	34.2	12.2	0.0	1.4	47.9	-3.4	44.5		
Biomass	83	47.4	14.5	39.5	1.2	102.6				

Nuclear Energy Institute

U.S. Nuclear Industry Production Costs by Quartile

3- year averages, 2008-2012, In 2012 cents per kilowatt-hour

					_				_								_		_			
	20	13 201	4	201	5	201	16	201	7	201	8	201	9	202	20	202	21	202	22	202	3	2024
Item Description (Final FY 14 Updated 5/2/13 LP Years)		FY14		FY15		FY16		FY17		FY18		FY19		FY20	<u> </u>	FY21		FY22		FY23		FY24
BP	A Rate	BPA	A Ra	te Period		BPA	Ra	ate Period	_	BPA	Rat	te Period		BPA	Rat	e Period		BP/	٩R	ate Period		
Direct and Indirect O&M Costs																						
Baseline Costs	\$	125,453	\$	118,345	\$	121,133	\$	117,795	\$	119,993	\$	119,895	\$	123,093	\$	119,895	\$	122,693	\$	119,895	\$	119,895
Outage Costs (Incremental)		-		29,750		-	L	25,200		-		34,800		-	l l	25,200		-		25,200		
Admin / General (A&G)		67,138		66,020		68,272	L	64,711		68,638		66,561		72,323	l l	71,646		74,081		71,897		71,524
O&M Projects		9,058		49,966		14,263	L	39,777		9,828		44,174		12,907	l l	41,931		11,261		43,752		43,752
Facilities O&M Projects		780		890		890	L	890		890		890		890	l l	890		890		890		890
O&M Risk Reserve		1,588		3,336		1,532		2,694		1,294		2,694		1,242		2,694		1,123		2,694		2,694
Subtotal Direct & Indirect O&M Costs	\$	204,017	\$	268,307	\$	206,090	\$	251,067	\$	200,643	\$	269,014	\$	210,455	\$	262,256	\$	210,048	\$	264,328	\$	238,755
Escalation on Direct & Indirect (3.5%)				9,391		14,679		27,295		29,599		50,490		48,248		71,328		66,545		95,924		98,033
Total Direct & Indirect O&M Costs (includes escalation)	\$	204,017	\$	277,698	\$	220,769	\$	278,362	\$	230,242	\$	319,504	\$	258,703	\$	333,584	\$	276,593	\$	360,252	\$	336,788
Capital Costs									_													
PRC Capital Projects	\$	54,246	\$	55,420	\$	34,443	\$	53,095	\$	29,517	\$	48,982	\$	24,807	\$	27,625	\$	16,450	\$	27,318	\$	33,889
Moveable Capital & Downtown Capital Projects	\$	1,281	\$	1,507	\$	1,507	\$	1,507	\$	1,507	\$	1,507	\$	1,507	\$	1,507	\$	1,507	\$	1,507	\$	1,507
Facilities Capital Projects	\$	500	\$	530	\$	535	\$	565	\$	565	\$	565	\$	565	\$	565	\$	565	\$	565	\$	565
Information Technology Capital Projects	\$	9,276	\$	8,235	\$	9,996	\$	8,288	\$	10,206	\$	9,286	\$	10,550	\$	9,887	\$	9,595	\$	9,701	\$	9,771
Admin / General (A&G)	\$	13,470	\$	14,920	\$	12,668	\$	16,229	\$	12,302	\$	14,379	\$	8,617	\$	9,294	\$	6,859	\$	9,043	\$	9,416
Capital Risk Reserve	\$	4,000	\$	8,000	\$	4,000	\$	6,000	\$	4,000	\$	6,000	\$	4,000	\$	4,110	\$	4,000	\$	4,000	\$	4,000
Fukushima Impacts	\$	18,080	\$	9,900	\$	16,710	\$	13,940		-												
Management Discretion-Special Projects**	\$	-	\$	5,250	\$	30,400	\$	29,894	\$	28,546	\$	8,300	\$	3,100	\$	3,100	\$	3,100	\$	3,100	\$	5,801
Subtotal Capital Costs	\$	100,853	\$	103,762	\$	110,259	\$	129,518	\$	86,643	\$	89,019	\$	53,146	\$	56,088	\$	42,076	\$	55,234	\$	64,949
Escalation on Capital (3.5%)			\$	3,632	\$	7,853	\$	14,081	\$	12,782	\$	16,708	\$	11,760	\$	14,848	\$	12,905	\$	19,619	\$	26,668
Total Capital Costs (includes escalation)	\$	100,853	\$	107,394	\$	118,112	\$	143,599	\$	99,425	\$	105,727	\$	64,906	\$	70,936	\$	54,981	\$	74,853	\$	91,617
Fuel Related Costs															i —							
Nuclear Fuel Amortization		50,811		44,447		57,895		51,184		60,576		53,678		62,239	l l	55,014		63,729		57,340		57,340
Spent Fuel Fee		8,768		7,594		8,956		7,901		8,932		7,899		8,918		7,867		8,894		7,989		7,989
Subtotal Fuel Related Costs	\$	59,579	\$	52,041	\$	66,851	\$	59,085	\$	69,508	\$	61,577	\$	71,157	\$	62,881	\$	72,623	\$	65,329	\$	65,329
															i –							
Total Unescalated Budget	\$	364,449	\$	424,110	\$	383,200	\$	439,670	\$	356,794	\$	419,610	\$	334,758	\$	381,225	\$	324,747	\$	384,891	\$	369,033
Total Escalation		-		13,022		22,532	L	41,376		42,381		67,198		60,008	1	86,176		79,450		115,543		124,700
Total Cost - Industry Basis	\$	364,449	\$	437,132	\$	405,732	\$	481,046	\$	399,175	\$	486,808	\$	394,766	\$	467,401	\$	404,197	\$	500,434	\$	493,733
Total Net Generation (Gwh)		9.468		8,291		9.799		8.701		9.772		8.299		9,799	i i	8.701		9.772		8,701		9,799
Outage Days		-	1	47		-	1	40		-,		55		-	1	40				40		
															i i							
Cost of Power (Cents per kWh, constant FY14\$)	\$	3.85	\$	5.12	\$	3.91	\$	5.05	\$	3.65	\$	5.06	\$	3.42	\$	4.38	\$	3.32	\$	4.42	\$	3.77
Cost of Power (Cents per kWh, escalated)	\$	3.85	\$	5.27	S	4.14	\$	5.53	\$	4.08	\$	5.87	\$	4.03	\$	5.37	\$	4.14	ŝ	5.75	S	5.04
	Ŷ	0.00	*	0.21	-		Ŷ	0.00	-			0.01	Ŧ		*	0.01	-		Y	0.10	*	0.01

Nuclear Fuel

- Nuclear fuel cycles can extend ten years between uranium mining and spent fuel
- The marginal cost of operations is the market price of the fuel in the early stages
- The accounting values (as shown by EIA and NEI) have little to do with operations.

FERC Form 1 Fuel and Market SWU Prices

Capital Additions

- Unlike coal and natural gas units, nuclear units consume \$90 million dollars per year in additional capital expenditure
- This is a massive marginal cost which "occurs" in the economists' sense, during the refueling outage

Aging Plants Cost More

Regressio	on Statistics							
Multiple R	0.878846602							
R Square	0.77237135							
Adjusted R Square	0.770822856							
Standard Error	55599178.3							
Observations	297							
ANOVA								
	đf	22	MS	F	Significanœ F			
Regression	2	3.08378E+18	1.54189E+18	498.7886569	3.25355E-95			
Residual	294	9.08833E+17	3.09127E+15					
Total	296	3.99261E+18						
	Coefficients	Standard Error	tStat	P-value	Lower 95%	Upper 95%	Lower 99.0%	Upper 99.0%
Intercept	-15743317.76	14553115.78	-1.08	0.28	-44384805.60	12898170.09	-53474525.37	21987889.85
Net Generation	0.02	0.00	30.44	0.00	0.02	0.02	0.02	0.02
Age	1316108.25	466224.24	2.82	0.01	398548.31	2233668.19	107349.66	2524866.84

National Nuclear Plant Cost Trends Source FERC Form 1s, EIA

What does this mean to society?

- Where data is available, it means that nuclear stations now cost more than the market
- Two examples:
 - Exelon's Quad Cities in Illinois
 - PG&E's Diablo Canyon in California
 - Columbia Generating Station in Washing

Market Alternatives

National Nuclear Plant Cost Trends Source FERC Form 1s, EN Annual Reports

Columbia Generating Station

- 1984 In-service date
- 1992 Last substantive cost review at BPA
- 1999 BPA and Energy Northwest adopt "Market Test"
- 2005 CGS begins buying fuel from high GHG emissions source
- 2008 Operating costs pass market prices
 - 2011 Condenser repair
 - 2022 Turbine replacement
- 2030 Probable closure date

Market Test

- In 1998 the four northwestern governors initiated a comprehensive review of BPA's role in the regional power system.
- The review adopted a "Market Test" which was adopted by BPA and Energy Northwest
- Every two years CGS's operation was made subject to comparison with market prices
 CGS has failed the test since 2009

FY 2015 Market Test

WNP-2 Avoidable Costs

Argus Mid-Columbia Prices

Problems and Opportunities

- CGS's institutional structure is a continuing challenge for BPA
 - Management without ownership
 - Unmanageable "Project Consultant" arbitration
- Costs, particularly O&M appear to be diverging from industry levels
- CGS's location places it in the center of overgeneration and far from load
- Mid-Columbia prices have been lower than "avoided costs" and this appears to be the case for years to come

Recommendations

- Verify that Section 15(c) of the 1971 Project Agreement gives the Administrator the power to direct the termination of CGS.
- BPA should issue a Request For Proposals on behalf of Energy Northwest seeking 1,130 MW.
- BPA staff would assemble responses and share the response data with the region.
- The final portfolio would be implemented by Energy Northwest.

Recommendations

- After contract implementation, CGS would begin DECON decommissioning in May 2015.
- Energy Northwest would handle employment transitions by a combination of methods. First, implementing DECON rather than SAFSTOR decommissioning. Second, training and employing workers in plant decommissioning – following the example of PGE (Trojan) and SMUD (Rancho Seco).

The Bottom Line

- If we had replaced the plant on July 1, 2012, BPA would have paid \$200 million less for power in FY 2013
- This translates to a 10.67% rate decrease at BPA

Employees Per MW Compared to FERC Filings FERC Form 1s (28 units)

■ BWR ■ PWR ■ CGS

Operating Cost per kWh FERC, NEI, and CGS

O&M Request to BPA

Enclosed are two reports from 1992 and 1993 where the maintenance costs are supplied. Our staff, Ms. Dana Sandlin, the Authorizing Official for this request, reports that the format for financial reports provided to BPA from Energy NW changed after 1993. In the new format the maintenance cost were no longer broken out. Therefore, for the years 1994 to 2012 we have no responsive records.

CGS Life Expectancy

- NRC licenses are akin to marriage licenses they permit a happy ever after outcome, but do not guarantee that this will happen
- Almost all decommissioned units in the U.S. have closed for economic grounds
 - Rancho Seco
 - Trojan
 - San Onofre
- CGS only has a 23% chance of living to 60

CGS Life Table

	Probability of plant closure between ages x and x + n	Number surviving to age x	Number plant closure between ages x and x + n	Plant-years lived between ages x and x + n	Total number of Plant-years lived above age x	Expectation of life at age x
	n qx	lx	n dx	n Lx	Tx	ex
1-5	0.0%	13.0	0.0	13.0	397.8	30.6
6-10	13.3%	13.0	1.7	25.1	332.8	25.6
11-15	15.4%	11.3	1.7	35.5	272.2	24.2
16-20	9.1%	9.5	0.9	44.6	220.2	23.1
21-25	10.0%	8.7	0.9	52.9	174.7	20.2
26-30	11.1%	7.8	0.9	60.2	133.5	17.1
31-35	25.0%	6.9	1.7	66.3	96.7	13.9
36-40	25.0%	5.2	1.3	70.9	66.3	12.8
41-45	25.0%	3.9	1.0	74.3	43.6	11.2
46-50	25.0%	2.9	0.7	76.8	26.5	9.1
51-55	25.0%	2.2	0.5	78.7	13.7	6.3
56-60	25.0%	1.6	1.6	80.2	4.1	2.5

Aurora Runs

- We used the standard Aurora data set updated for the Oregon, Washington, and California Renewable Portfolio Standards (RPS)
- We also updated the natural gas forecast to match the EIA's 2013 AEO
- We ran build outs through 2045 in with and with out CGS cases
- Overall, we ran 35,000 games with stochastic wind and hydro

Replacement Benefits

Policy Considerations

- Contract Risk
- Paducah Enrichment Program
- Decommissioning costs

Contract Comparison

	1971 Project Agreement	EEI Master Contract
Structure	Take or Pay	Take and Pay
Duration	Unknown	Set per agreement
Commissioning	Completed	Set per agreement
Pricing	Cost plus	Set per agreement
	Nuclear Insurance and	
Credit Support	BPA's Customers	Vendor
Fuel Source	Nuclear	Unknown (probably Gas/Wind)
Operating Risks	Nuclear	Force Majeure
Insurance	Nuclear insurance	Set per agreement
Environmental Issues	None	Set per agreement

Emissions

- CGS is less "emissions free" than "emissions elsewhere"
- Energy Northwest agreed to speculate in nuclear fuel
- The basic framework was for a \$700 million payment for reprocessing tailings with deliveries to TVA over the next decade
- The transaction lost \$150 million when signed and has deteriorated simce then
- This leaves CGS with the dirtiest fuel in the industry for years to come

Carbon Release

- Energy Northwest's one year contract with Paducah required 1,328 MW of coal based generation in Kentucky
- Paducah also released 197.3 metric tons of freon with a carbon equivalence of 1,973,000 tons
- Overall, the Paducah transaction released carbon and carbon equivalents of 15 million metric tons in FY 2013
- This is the rough equivalent of 3,000,000 cars

April 5,2013 Conference Call With NRC

NRC: "Historically, I would say that uh probably the minimum decommissioning funding formula has increased probably on average around 8 to 9 percent a year. Uh this, the primary driver would probably be the burial costs. Uh disposal of low-level waste is getting to be a very expensive proposition for a variety of economic reasons. There are very few places you can dispose of this; there are also 3 major classifications for spen..., excuse me, for low-level waste, such that the uh higher radiological content of the waste will incur higher costs for disposal. However, this has been offset to some degree by the techniques and technologies that are now available to the industry, to decontaminated plants, so therefore the uh mix, of what, what we classify as a, b, and clow-level waste can change in such a manner that the economics can usually be a little bit more beneficial.

Nuclear Waste Policy Act of 1982

"Because the Secretary is apparently unable to conduct a legally adequate fee assessment, the Secretary is ordered to submit to Congress a proposal to change the fee to zero until such a time as either the Secretary chooses to comply with the Act as it is currently written, or until Congress enacts an alternative waste management plan."

November 19, 2013, United States Court of Appeals for the District of Columbia Circuit

Canadian Hydro

- British Columbia Hydro is adding a new major facility, Site C
- It is also considering upgrades at other hydro facilities like Mica
- We need intrayear storage and associated capacity to complete mandated renew
- This is significantly cheaper than our alternatives