Phil Rockefeller Chair Washington

Tom Karier Washington

Henry Lorenzen Oregon

Bill Bradbury Oregon

June 2, 2015

MEMORANDUM

TO: Council members

FROM: Tom Eckman, Ben Kujala and John Ollis

SUBJECT: Discussion of Scenario Analysis Results

BACKGROUND:

Presenter: Tom Eckman and Ben Kujala

Summary On May 26th staff <u>presented</u> the initial results for Scenarios 1A, 1B, 2C, 4C and 4D at a webinar for the Power Committee. At that webinar staff indicated that all of these scenarios would be re-run with updated model inputs based on recommendations from the System Analysis Advisory Committee.

Staff expects to present revised results for four Scenarios (1A, 1B, 2C, and 4C). These revised results reflect 1) updated input assumptions for the relationship between weather normalized average loads and weather sensitive peak hourly loads, and 2) revisions to the method used for calculating the capacity and energy resource adequacy requirements derived from GENESYS.

This presentation will look at the least cost and least risk resource strategies for the RPM scenario analyses. The scenarios that will be discussed are:

W. Bill Booth Vice Chair Idaho

James Yost Idaho

Pat Smith Montana

Jennifer Anders Montana

- 1A Considers deterministic approach where uncertainty is removed from the model and only generating resources are considered (i.e., Demand Response or Energy Efficiency resources options are excluded)
- 1B Current policy without any incremental cost for carbon included
- 2C Considers uncertainty in the cost of carbon ranging from \$0 to \$110/metric ton
- 4C Same as 2C with increased ramp speed on conservation
- Workplan: 1. B. Develop Seventh Power Plan and maintain analytical capability
- Background: The RPM or Regional Portfolio Model was recently redeveloped by Navigant for the Council. The RPM estimates the regional costs and risks associated with pursuing resource development strategies and it uses optimization to look for strategies that minimize the estimated cost and risk. Results from the RPM will be used to inform the components of the resource strategy set forth by the Council in its Seventh Power Plan.
- More Info: None at this time.

Selected Findings from Scenario Analysis Conducted To Date

Power Committee 6/09/15

Today's Presentations

- Comparison of the Least Cost *Resource Strategies* across 800 futures for three *Scenarios:*
 - Existing Policy without Uncertainty, w/o GHG reduction risk (1A)
 - Existing Policy with Uncertainty, w/o GHG reduction risk (1B)
 - Existing Policy with Uncertainty and with uncertain GHG reduction risk(2C) -
- Comparison Metrics
 - Distribution of Net System Cost (\$)
 - Distribution of conservation development (aMW and MW)
 - Distribution of RPS resource development (aMW and MW)
 - Average Thermal Resource development (aMW and MW)
 - Distribution of Demand Response development (MW)
 - CO2 emissions for Total Regional Power System and Plants Affected by EPA's Proposed 111(d) Regulation
- Observations Regarding Emerging Resource Development Strategies

Today's Presentation

- Reflects fine tuning (since Webinar) of RPM input assumptions for resource adequacy
 - Revised peak load forecasting method now uses historical relationship between temperature and weather sensitive loads
 - Increased expected peak demands
 - Method consistent between GENESYS and RPM
 - Calculation of Adequacy Reserve Margins (ARMs) from GENESYS revised to isolate independent energy and capacity requirements
- RPM input <u>does not</u> yet reflect different seasonal peak capacity values for conservation
 - This will result in lower summer conservation peak impacts
- Implication Generalizations Okay, Details May Change – So Don't Fixate On the Exact Numbers!

Common Elements of *Least Cost* Resource Strategies Across Scenarios Analyzed To Date

- In all scenarios least cost resource strategies rely heavily on conservation to meet <u>both</u> winter capacity and energy needs
- In all scenarios least cost resource strategies rely on low cost Demand Response options to maintain adequate capacity margins
 - DR is optioned because it has a shorter lead time, smaller incremental resource size and lower cost than generation options
- In all scenarios least cost resource strategies build renewable resources to satisfy state RPS requirements
 - REC banking delays the need for constructing RPS resources until well past the action plan period
 - The only exception is the Scenario 4D Slower Conservation Ramp Rate

Average Conservation Development Across Scenarios is Increases When Uncertainty and Carbon Risk Are Considered

Average Conservation Development for Winter Capacity Across Scenarios is Increases When Uncertainty and Carbon Risk Are Considered

Net Load After Conservation Least Cost Strategy – Scenario 1B

Net Load After Conservation Least Cost Strategy – Scenario 2C

Net Load After Conservation Least Cost Strategy – Scenarios 1B and 2C

Net Load After Conservation Scenario 2C Least Cost Strategy and 6th Plan

Common Elements of *Least Cost* Resource Strategies Across Scenarios Analyzed To Date

- In all scenarios least cost resource strategies rely heavily on conservation to meet both winter capacity and energy needs
- In all scenarios least cost resource strategies rely on low cost Demand Response options to maintain adequate capacity margins
 - DR is optioned because it has a shorter lead time, smaller incremental resource size and lower cost than generation options
- In all scenarios least cost resource strategies build renewable resources to satisfy state RPS requirements
 - REC banking delays the need for constructing RPS resources until well past the action plan period
 - The only exception is the Scenario 4D Slower Conservation Ramp Rate

Average Demand Response Winter Peak Development in Least Cost Resource Strategies for Scenarios 1A, 1B and 2C

Northwest Power and

Conservation Council

Average Demand Response Development in Least Cost Resource Strategy for Scenarios 1A, 1B and 2C

Common Elements of *Least Cost* Resource Strategies Across Scenarios Analyzed To Date

- In all scenarios least cost resource strategies rely heavily on conservation to meet both winter capacity and energy needs
- In all scenarios least cost resource strategies rely on low cost Demand Response options to maintain adequate capacity margins
 - DR is optioned because it has a shorter lead time, smaller incremental resource size and lower cost than generation options

 In all scenarios least cost resource strategies build renewable resources to satisfy state RPS requirements

 REC banking delays the need for constructing RPS resources until well past the action plan period

Average Renewable Resource Development for Energy Least Cost Resource Strategy for Scenarios 1A, 1B and 2C

The Least Cost Strategies for Scenarios 1A, 1B and 2C Cumulative Probability of Renewable Resource Development Through 2035

Cumulative Resource Development (aMW)

Average Renewable Resource Development Across Scenarios is Increases When Uncertainty and Carbon Risk Are Considered

Common Elements of Least Cost Resource Strategies Across Scenarios Analyzed To Date (cont)

- Least cost strategies already have low risk
 - The planning period starts with an immediate need for capacity in most futures
 - Adequacy requirements and RPS drive resource builds, thus reducing market price risk exposure
- Economic builds are few and far between
 - There are no Economic builds in Scenario 1A and they occur in less than 1% of futures in the least cost resource strategy in Scenario 1B and less than 5% of the futures in other Scenario 2C
- Thermal build options selected for adequacy are related retirements of the second unit of Centralia

There Are Very Few Futures Where Economic Resource Builds Occur Across All Scenarios

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Thermal Resource Development Through 2026 for Capacity

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Thermal Resource Development Through 2026 for Energy

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Thermal Resource Development Through 2035 for Capacity

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Thermal Resource Development Through 2035 for Energy

Common Elements of Least Cost Resource Strategies Across Scenarios Analyzed To Date (cont)

- Least cost strategies already have low risk
 - The planning period starts with an immediate need for capacity in most futures
 - Adequacy requirements and RPS drive resource builds, thus reducing market price risk exposure
- Economic builds are few and far between
 - There are no Economic builds in Scenario 1A and they occur in less than 1% of futures in the least cost resource strategy in Scenario 1B and less than 5% of the futures in other Scenario 2C

 Thermal build options selected for adequacy are related retirements of the second unit of Centralia

Least Cost Resource Strategy for Scenarios 1A, 1B and 2C Average Energy Thermal Resource Development for Capacity

Least Cost Resource Strategy for Scenarios 1A, 1B and 2C Average Energy Thermal Resource Development for Energy

Conservation Council

With No Uncertainty Winter Peaking Capacity Is Met with Demand Response and Conservation Scenario 1A - Least Cost Resource Strategy

With No Carbon Risk Uncertainty Winter Peaking Capacity Is Met with Demand Response, Conservation and Limited Thermal Resource Development Scenario 1B - Least Cost Resource Strategy

With Carbon Risk Uncertainty Winter Peaking Capacity Is Met with Demand Response, Conservation and Limited Thermal Resource Development Scenario 2C - Least Cost Resource Strategy

With No Uncertainty Demand for Energy Is Met with Conservation and Renewable Resources Scenario 1A - Least Cost Resource Strategy

With No Carbon Risk Uncertainty Demand for Energy Is Met with Conservation, Renewable and Thermal Resources Scenario 1B - Least Cost Resource Strategy

With Carbon Risk Uncertainty Demand for Energy Is Met with Conservation, Renewable and Thermal Resources Scenario 2C - Least Cost Resource Strategy

Scenario 2B and 2C Cost of Carbon Assumptions

Conservation Council

Distribution CO2 Emissions in 2030 for Resources Subject to EPA's Proposed 111(d) Regulations Scenarios 1B and 2C – Least Cost Resource Strategies

Scenario 1B - Current Policy, No Carbon Risk

Scenario 2C - Carbon Risk

Distribution CO2 Emissions in 2030 for PNW Power System Scenarios 1B and 2C – Least Cost Resource Strategies

Scenario 1B - Current Policy, No Carbon Risk

Scenario 2C - Carbon Risk

Thermal Resource Dispatch without Carbon Risk

Thermal Resource Dispatch with Carbon Risk

Change in Coal Dispatch Scenario 1B vs. Scenario 2C

Change in Existing Gas Dispatch Scenario 1B vs. Scenario 2C

Sensitivity Studies

- The following sensitivity studies have been suggested:
 - Remove transmission credit for "west side" resources (DR, EE and gas turbines)
 - Remove DR as resource option
 - Test alternative (i.e., lower) EE winter capacity contribution
 - Test sensitivity to natural gas price assumptions
 - Assume Boardman and Centralia are not retired

• Others?

Scenario	Scenario Name	Priority	Modeling	Revised
10	Fuiting Delign with the containty w/o CLIC reduction righ	1	EIIOIL	Scheuule
IB	Existing Policy with Uncertainty, w/o GHG reduction risk		Ivied	Early May
1A	Existing Policy without Uncertainty, w/o GHG reduction risk	2	Med	Early May
2C	Existing Policy with Uncertainty and with uncertain GHG reduction risk/target.	3	Low	Early May
4C	Major Resource Uncertainty – Faster Pace of Conservation Deployment	4	Low	Late May
4D	Major Resource Uncertainty – Slower Pace of Conservation Deployment	5	Low	Late May
2A	Existing Policy with Uncertainty and with certain GHG reduction risk/target. Example Policy Target = Clean Power Plan/Clean Air Act 111(d) goal (e.g., 30%	6	Med	May not need to
	below 2005 level by 2030			model
2B	Existing Policy with Uncertainty and with certain GHG reduction risk/target. Example Policy Target = Mitigate to Estimated GHG Damage Cost	7	Low	Early June
6A	Climate Change Load Impacts Resulting from Direct Effects of Climate Change	8	Low	Mid-June
4B	Major Resource Uncertainty - Anticipated Loss of Major Non-GHG Emitting Resource	9	Low	Mid- June
5B	Southwest Market Liquidity Variability	11	Low	Late June
3A	Lowering carbon emissions with current technology	12	Med	Late June
4A	Major Resource Uncertainty - Unexpected Loss of Major Non-GHG Emitting Resource	13	Low	Early July
3B	Lowering carbon emissions with emerging technology (e.g., storage, CO ₂ heat pumps, SSL)	14	High	Not Modeled
5A	Integration of Variable Resources (i.e., Managing the NW Impact of the "Duck Curve"/50% CA RPS)	15	Med/High	Mid-July
6B	Climate Change Hydro Impacts	16	High	Mid-July
	b			NORTHWEST

Backup Slides

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Conservation Development Through 2021 Scenarios 1A, 1B and 2C – Least Cost Resource Strategies

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Conservation Development Through 2026 Scenarios 1A, 1B and 2C – Least Cost Resource Strategies

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Conservation Development Through 2035 Scenarios 1A, 1B and 2C – Least Cost Resource Strategies

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Conservation Development Through 2021 for Winter Capacity

Scenarios 1A,1B and 2C – Least Cost Resource Strategies

Northwest **Power** and

Conservation Council

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Conservation Development Through 2026 for Winter Capacity

The Least Cost Strategies for Scenarios 1A, 1B and 2C Distributions of Conservation Through 2035 Development for Winter Capacity

Average Conservation Winter Peak Development in Least Cost Resource Strategies for Scenarios 1A, 1B and 2C

Conservation Council

Average Energy Conservation Development in Least Cost Resource Strategy for Scenarios 1A, 1B and 2C

Conservation Council

The Distribution of RPS Resource Development Through 2035 Is Affected By Conservation Development Scenarios 1A,1B and 2C – Least Cost Resource Strategies

Average Renewable Resource Winter Peak Development in Least Cost Resource Strategies for Scenarios 1A, 1B and 2C

Conservation Council