Henry Lorenzen Chair Oregon

Bill Bradbury Oregon

Phil Rockefeller Washington

> Tom Karier Washington

W. Bill Booth Vice Chair Idaho

James Yost Idaho

Pat Smith Montana

Jennifer Anders Montana

July 6, 2016

MEMORANDUM

TO: Council Members

FROM: John Fazio, Senior Systems Analyst

SUBJECT: Power Supply Adequacy Assessment for 2021

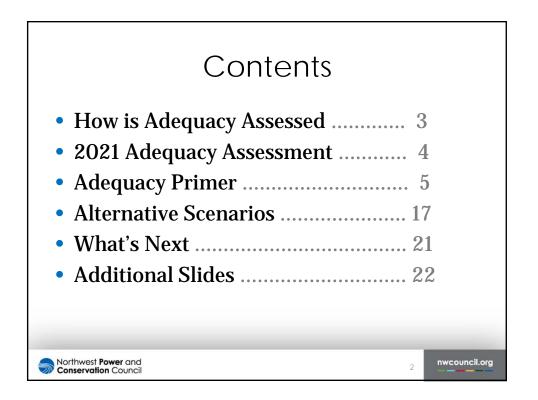
BACKGROUND:

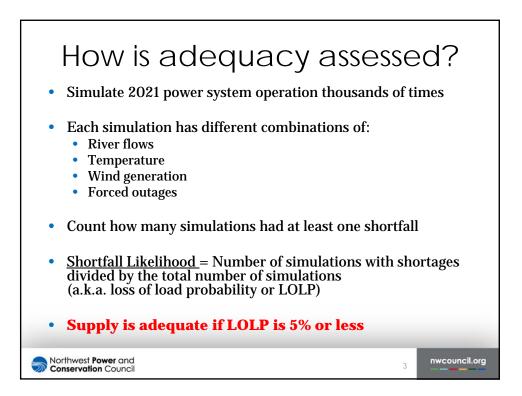
- Presenter: John Fazio
- Summary: In 2011, the Council adopted a methodology to assess the adequacy of the Northwest's power supply. The purpose of this assessment is to provide an early warning should resource development fail to keep pace with demand growth. The Council's standard defines an adequate power supply to have no more than a 5 percent chance of a resource shortfall in the year being assessed. This metric is commonly referred to as the loss-of-load probability (LOLP) and any future power supply with an LOLP greater than 5 percent is deemed to be inadequate.

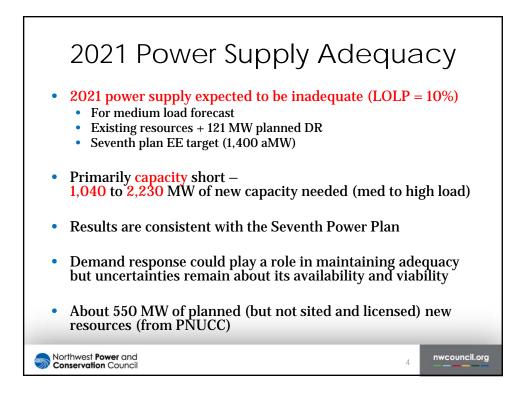
The Pacific Northwest's power supply is expected to be adequate through 2020, however, by 2021 – with the loss of the Boardman and Centralia-1 coal plants (1,330 MW nameplate) – the LOLP rises to about 10 percent¹ and would lead to an inadequate supply without intermediate actions. These results assume that the region will continue to acquire energy

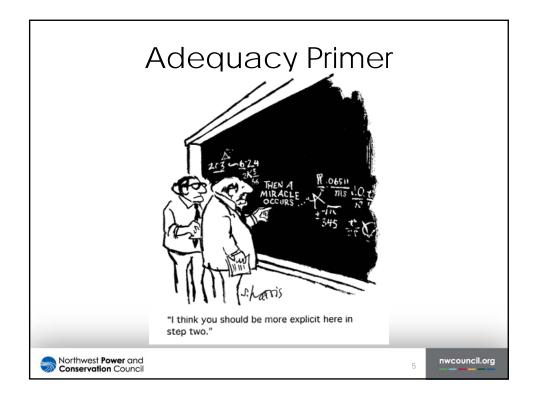
¹ Boardman and Centralia 1 coal plants are scheduled to retire in December of 2020. However, because the Council's operating year runs from October 2020 through September 2021, these two plants would be available for use during the first three months of the 2021 operating year. For this scenario, the LOLP is 7.6 percent. The Council must take into account the long term effects of these retirements and, therefore, uses the more generic study that has both plants out for the entire operating year.

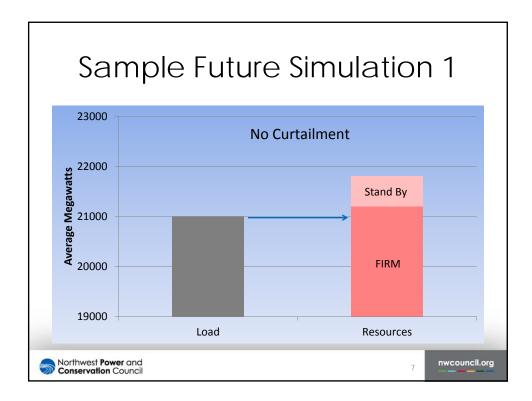
efficiency savings as targeted in the Council's Seventh Power Plan, which amount to 1,400 average megawatts of savings through 2021.

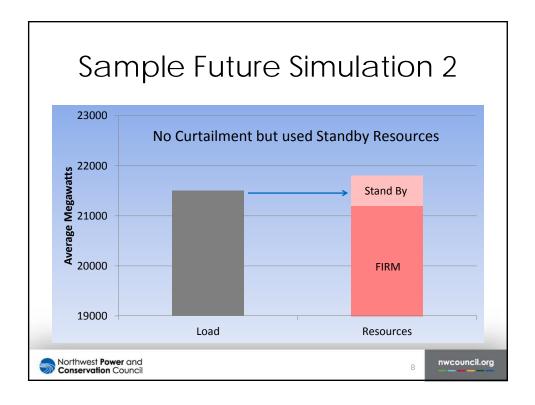

Actions to bring the 2021 power supply into compliance with the Council's standard will vary depending on the types of new generating resources or demand reduction programs that are considered. Designing a resource strategy to ensure an adequate power supply for 2021 is more appropriately done using the strategy outlined in the Council's Seventh Power Plan. In all likelihood, some combination of new generation and load reduction programs will be used to bridge the gap.

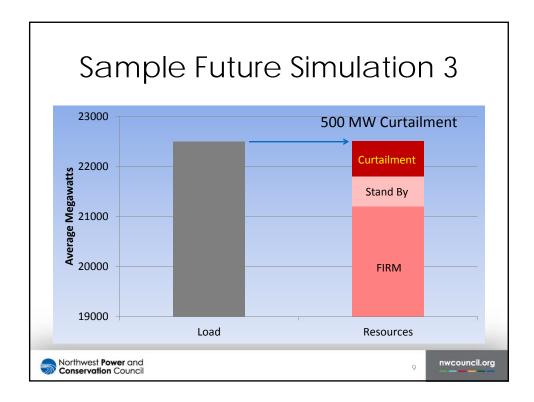

Northwest utilities, as reported in the Pacific Northwest Utilities Conference Committee's 2016 Northwest Regional Forecast have identified about 550 megawatts of planned generating capacity for 2021. However, these planned resources are not sited and licensed and are therefore, not included in the 2021 adequacy assessment. It is important to note that demand response programs could play a vital role in maintaining power supply adequacy, as reported in the Council's Seventh Power Plan.

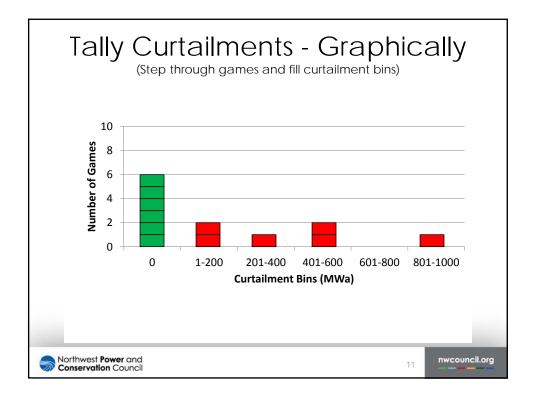

- Relevance: Besides being an early warning to ensure that the regional power supply remains adequate, the Council's adequacy standard is converted into Adequacy Reserve Margins (for both energy and capacity) that are fed into the Regional Portfolio Model to ensure that resource strategies developed by that model will produce an adequate supply.
- Workplan: A.5.2. Complete Annual Adequacy Assessments
- Background: Since the late 1990s, the Council has worked to develop a more robust method of assessing the adequacy of the region's power supply. In 2011 it formally adopted the loss-of-load probability (LOLP) metric as the measure to assess adequacy and set its maximum threshold at 5 percent. The Council reassesses this every year, looking at the adequacy of the power supply five years out, as an early warning to ensure that adequacy is maintained.
- More Info: For more information please go to the Resource Adequacy Advisory Committee webpage:

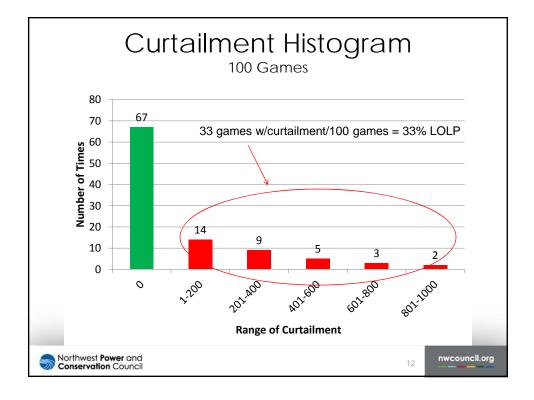

http://www.nwcouncil.org/energy/resource/home/

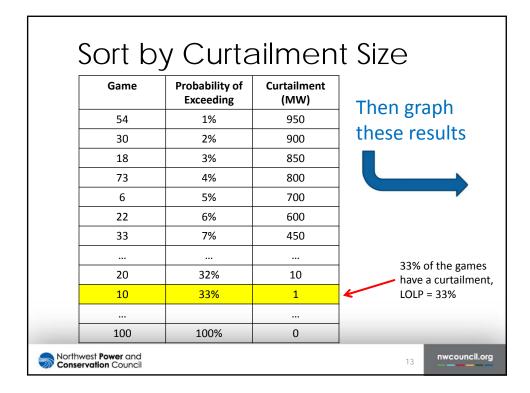


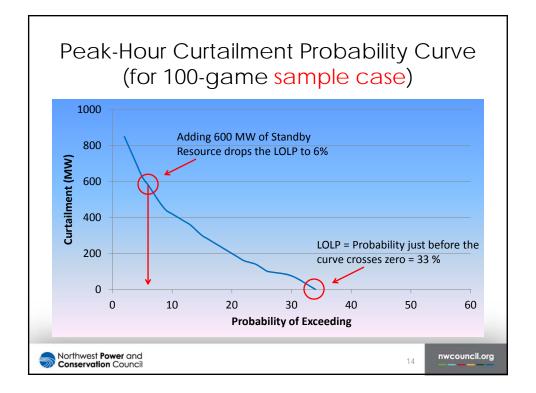




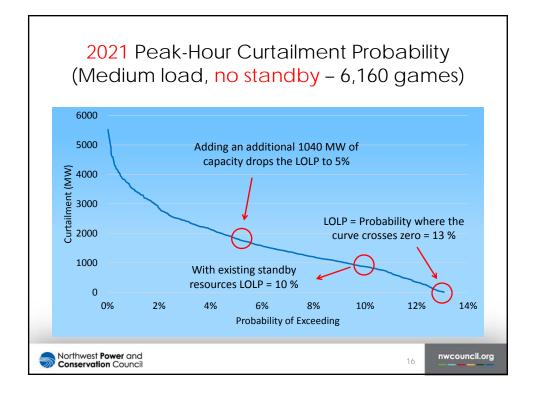

	Reso	ource Dispatch Orde	er	
	Resource	Description		
$\left \right.$	Firm Hydro and Thermal	From lowest to highest operating cost	Modeled in	
	Non-firm and Markets	In-region and out-of-region markets, surplus hydro, borrowed hydro	GENESYS	
	Standby Resources Type 1	Non-declared utility resources (diesel generators, etc.)	Modeled in Post	
	Standby Resources Type 2	Demand response and buy-back load provisions	Processor	
	Emergency Action 1	More expensive non-declared resources or contract provisions		
(Emergency Action 2	Governor's call for voluntary curtailment of energy	Not Modeled, Not part of	
	Emergency Action 3	Rolling black outs or brown outs	Assessment	
	Northwest Power and Conservation Council	6	nwcouncil.org	

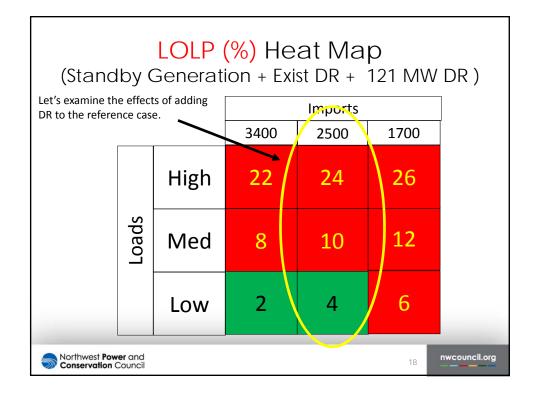


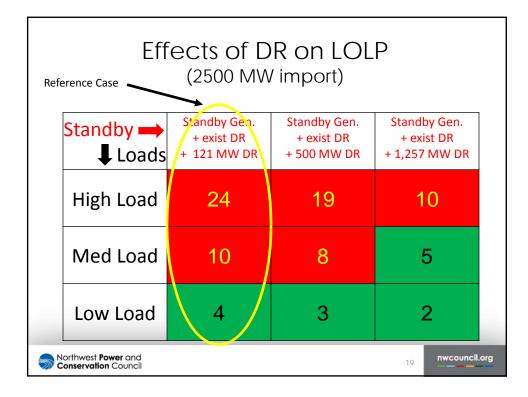




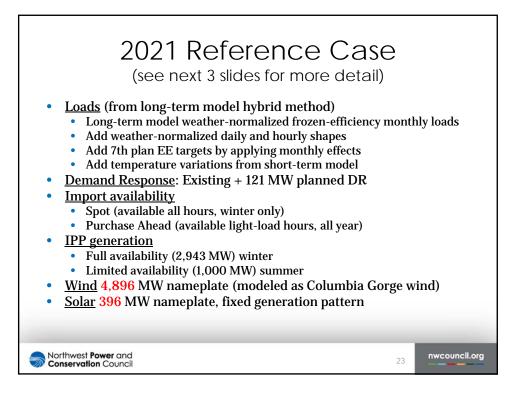
Tally C	Curtailme	ents by (Game
	Game	Curtailment (MW)	
	1	0	
	2	0	
	3	500	
	4	0	
	5	900	
	6	100	
	7	0	
	8	450	
	9	0	
	10	150	
	100	0	
Northwest Power and Conservation Council			10 nwcouncil.org



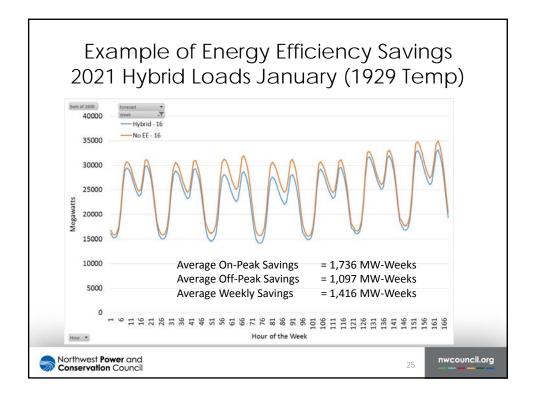


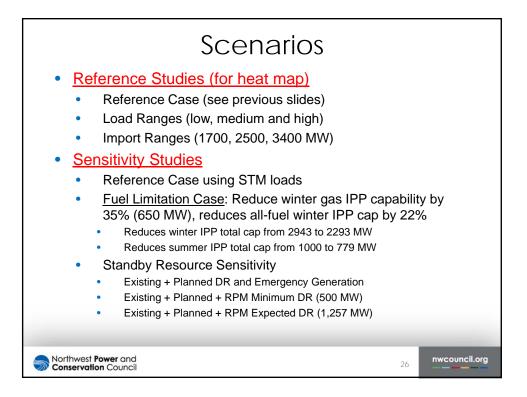


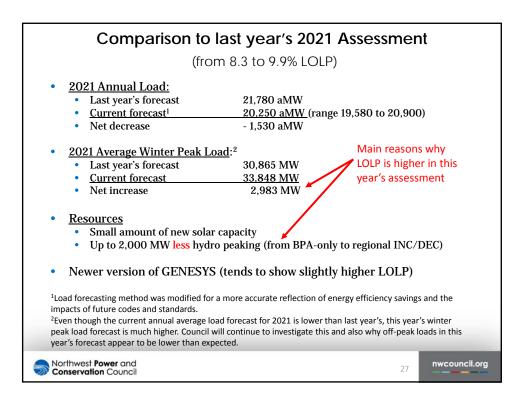
Game	Probability of Exceeding	Curtailment + 600 MW	
54	1%	<mark>950</mark> 350	
30	2%	<mark>900</mark> 300	
18	3%	<mark>850</mark> 250	6% of the games
73	4%	<mark>800</mark> 200	 have a curtailment, LOLP = 6%
6	5%	700 100	
22	6%	601 1	
33	7%	<mark>450</mark> 0	
20	32%	10 0	
10	33%	1 0	
100	100%	0	



Sensitivity Case Loss of gas supply for IPP/ Market friction effect			Loss of 650 MW IPP 2500 MW import		
Ref Case	Standby	Standby Gen. + exist DR + 121 MW DR	Standby Gen. + exist DR + 500 MW DR	Standby Gen. + exist DR + 1,257 MW DR	
24	High Load	30	23	13	
10	Med Load	13	10	6	
4	Low Load	6	5	3	
Northwest Power and Conservation Council				20 nwcounc	il.org







Reference Case Assumptions

Item	Quarter 4	Quarter 1	Quarter 2	Quarter 3
Mean Load (aMW)	21,234	20,975	18,813	19,987
Peak Load (MW)	33,768	33,848	26,504	28,302
DSI Load ² (aMW)	338	338	338	338
Mean EE (aMW)	1,545	1,574	1,274	1,208
Peak EE (MW)	2,660	2,660	1,680	1,680
Spot Imports (MW)	2,500	2,500	0	0
Purchase Ahead (MW)	3,000	3,000	3,000	3,000
² DSI load is 338 aMW in lo	w, med and high lo	ad cases in 2021.		
Northwest Power and Conservation Council				24 nwcounc

CON	ipan	SOLI	to Past Assessments
Year Analyzed	Operation Year	LOLP	Observations
2010	2015	5%	Was part of the Council's 6 th Power Plan
2012	2017	7%	Imports deceased from 3,200 to 1,700 MW, load growth 150 aMW per year, only 114 MW of new thermal capacity
2014	2019	6%	Load growth 0.6%, over 600 MW new generating capacity, increased imports by 800 MW
2015	2020	5%	Lower load forecast, 350 MW of additional EE savings
2015	2021 8.3%	8.3%	Early estimate (BPA INC/DEC only)
2013	2021	0.570	Loss of Boardman and Centralia 1 (~1,330 MW)
2016	2021	10%	2021 loads lower than last year's forecast (~1,500 aMW) but winter peaks are higher (~3,000 MW), using regional INC/DEC reduces hydro peaking by as much as 2,000 MW

Henry Lorenzen Chair Oregon

Bill Bradbury Oregon

Phil Rockefeller Washington

> Tom Karier Washington

W. Bill Booth Vice Chair Idaho

James Yost Idaho

Pat Smith Montana

Jennifer Anders Montana

July 6, 2016

DECISION MEMORANDUM

TO: Council Members

FROM: John Fazio, Senior Systems Analyst

SUBJECT: Council Decision to Approve the 2021 Resource Adequacy Assessment

PROPOSED ACTION: Approval of the 2021 power supply adequacy assessment

SIGNIFICANCE:

- Approving the resource adequacy assessment for 2021 meets the requirements for action item Res-8 in the Council's Seventh Power Plan, "In order to track Seventh Plan implementation and adapt as needed the Council, in cooperation with regional stakeholders, will provide: an annual resource adequacy assessment."
- Results from this analysis are used in the Council's resource strategy methodology to ensure that future strategies will provide adequate supplies.
- Results have also proven to be valuable to regional utilities (to aid in the assessments of their own resource plans) and to utility commissions who review those plans.
- Results are also shared with other electricity industry planning entities, such as the Western Electricity Coordinating Council (WECC) and the North American Electric Reliability Corporation (NERC).

BUDGETARY/ECONOMIC IMPACTS:

There are no effects on the Council's budget. Analysis supporting the adequacy assessment for the Northwest's power supply was performed by Council staff, aided by members of the Council's Resource Adequacy Advisory Committee. Preparing the final report, which includes a technical appendix, will also be done in house. There is no anticipated contract work to complete this task.

BACKGROUND:

Events such as the Western energy crisis of 2001, which led to West-wide electricity price spikes, have forced utilities and regulators to rethink their approach to planning and operating the power system. The crisis demonstrated that the public has little tolerance for high and volatile market prices over a prolonged period. It also became clear that the financial community will not lend money for power-plant construction unless developers have power contracts in hand and/or utilities have included the costs of those contracts in their rates.

In an environment where an increasing number of parties have taken on the responsibility for acquiring resources to serve regional load, a resource adequacy standard is key to ensuring overall regional sufficiency of resources to meet load at reasonable costs. The Pacific Northwest is unique, not only in the predominately hydroelectric nature of its resources, but also in the ratio of publicly-owned utilities (POUs) to investor-owned utilities (IOUs).

Monitoring and assessing regional resource adequacy is especially important in the Pacific Northwest for the following reasons:

- The ability to rely on wholesale electricity markets and surplus hydroelectric generation (in most years) can mask a condition of resource deficiency.
- The capital risk of constructing new resources in a market with substantially varying supply levels from year to year may be too great for many developers.
- There is a continuing lack of clarity about the responsibility for resource acquisition among public utilities, BPA and independent power producers.

In its Fifth Power Plan, the Council recognized the importance of developing a resource adequacy standard and implementation framework. Action items ADQ-1 and ADQ-2 in that plan called for the establishment of resource information-gathering protocol and for the development of a resource adequacy standard for the Pacific Northwest. To achieve these goals, the Council chartered the Resource Adequacy Advisory Committee (RAAC), with the intention that this group would aid the Council in developing a resource adequacy standard for the Northwest.

In December of 2011, the Council formally adopted its resource adequacy standard. This assessment of the 2021 power supply adequacy should help utilities and their regulators gauge whether they have enough resources to meet their loads under a regionally accepted measure of generation sufficiency.

ANALYSIS:

The RAAC has been aiding Council staff on this task since fall of 2013. Analysis and documents, including meeting notes, are posted on the Council's web site at http://www.nwcouncil.org/energy/resource/Default.asp. The RAAC is comprised of a technical work group and a policy steering committee.

During this past year, the RAAC has reviewed load forecast and resource data, including potential market supplies from within the region and imports from the Pacific Southwest. These data are input to the GENESYS model, which simulates the hourly operation of the power supply over many different future conditions. The model calculates how many of those simulated yearly operations experience at least one occurrence of a failure to meet load. The number of simulations in which at least one curtailment occurred divided by the total number of simulations yields the loss of load probability or LOLP, which must be 5 percent or less for the power supply to be deemed adequate.

ALTERNATIVES:

- One alternative would be to delay the release of this assessment for the purpose
 of obtaining a more comprehensive review of the data. However, RAAC
 members already represent a wide range of interested parties, ranging from
 private and public utilities, to federal agencies, utility commissioners,
 environmental groups, trade associations and transmission planners. All RAAC
 meetings were open to the public. The RAAC members support the results from
 this analysis but understand that some data can be improved upon. However, if
 the release of this report is delayed substantially, the schedule for implementing
 some of the action items in the Seventh Power Plan may be jeopardized.
- A second alternative would be to delay the release until certain improvements to the model can be made. Those improvements include the addition of more subregional "bubbles" to better address transmission limitations and to more thoroughly explore the issue of market "friction." Other enhancements include a more detailed hourly hydro dispatch algorithm to better address capacity issues. This alternative is detailed in the Seventh Power Plan Action item ANLYS-22 and would make the model and results better but it would also effectively delay the release of adequacy assessment for several years.

ATTACHMENTS:

Attached is the Council's report entitled, "Pacific Northwest Power Supply Adequacy Assessment for 2021."

Henry Lorenzen Chair Oregon

Bill Bradbury Oregon

Phil Rockefeller Washington

> Tom Karier Washington

July 12, 2016

2021 POWER SUPPLY ADEQUACY ASSESSMENT

The Pacific Northwest's power supply is expected to be adequate through 2020. The Northwest Power and Conservation Council estimates that the likelihood of a power supply shortage in that year is just under the 5 percent standard set by the Council in 2011. By 2021, however, after the planned retirements of the Boardman and Centralia-1 coal plants (1,330 MW nameplate), the likelihood of a shortfall (also referred to as the loss-of-load probability or LOLP) rises to about 10 percent¹ and would lead to an inadequate supply without additional resource acquisition actions.

These results are based on a stochastic analysis that examines the operation of the power supply over thousands of different combinations of river flow, wind generation, forced outage, and temperature for the 2021 operating year. Since last year's assessment for 2021, which resulted in an 8 percent LOLP, the annual average load forecast for that year has dropped by about 1,500 average megawatts. However, the winter peak load forecast has increased by close to 3,000 megawatts. Also, last year's assessment only included the Bonneville Power Administration's share of balancing reserves. Applying regional balancing reserves to the analysis in combination with the higher winter peak load forecast raises the LOLP to the 10 percent level, in spite of the lower annual average load forecast.

For each simulation, the underlying demand was set to the Council's medium forecast and the availability of imports from the Southwest was also set to a fixed value. If demand growth were to vary from the medium forecast and if the availability of imports were to change, the LOLP could drop as low as 2 percent or rise as high as 26 percent. But those extreme cases are not likely to occur.

W. Bill Booth Vice Chair Idaho

James Yost Idaho

Pat Smith Montana

Jennifer Anders Montana

¹ Boardman and Centralia 1 coal plants are scheduled to retire in December 2020. However, because the Council's operating year runs from October 2020 through September 2021, these two plants would be available for use during the first three months of the 2021 operating year. For this scenario, the LOLP is 7.6 percent. The Council must take into account the long-term effects of these retirements, and therefore uses the more generic study that has both plants out for the entire operating year.

These results also assume that the region will continue to acquire energy efficiency savings as targeted in the Council's Seventh Power Plan, which amounts to 1,400 average megawatts of savings through 2021. The region will also need to add between 1,000 to 2,300 megawatts of capacity, depending on load growth, to ensure an adequate supply.

Resource acquisition plans to bring the 2021 power supply into compliance with the Council's standard will vary depending on the types of new generating resources or demand reduction programs that are considered. In all likelihood, some combination of new generation and load reduction programs will be used to bridge the gap. It should be noted that developing a strategy to maintain an adequate, efficient, economical, and reliable power supply is beyond the scope of this analysis. Designing a resource strategy to ensure an adequate power supply for 2021 is more appropriately done using the strategy outlined in the Council's Seventh Power Plan.

Northwest utilities, as reported in the Pacific Northwest Utilities Conference Committee's 2016 Northwest Regional Forecast, show about 550 megawatts of planned generating capacity for 2021. However, these planned resources are not sited and licensed and are therefore not included in the 2021 adequacy assessment. As conditions change over the next few years, it is expected that utilities will revise their resource acquisition strategies to ensure that sufficient investments in new resources, which include energy efficiency and demand response, will be made to maintain an adequate supply.