Henry Lorenzen Chair Oregon

Bill Bradbury Oregon

Guy Norman Washington

Tom Karier Washington

W. Bill Booth Vice Chair Idaho

James Yost

Jennifer Anders Montana

> Tim Baker Montana

July 5, 2017

MEMORANDUM

TO: Power Committee

FROM: Massoud Jourabchi

SUBJECT: Action item ANLY-4- Review and enhancement of peak load forecasting

BACKGROUND:

Presenters: Massoud Jourabchi

Summary: On an ongoing basis Council's models are reviewed and if necessary

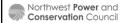
enhanced. In this presentation weather-normalized peak loads produced by the modeling systems currently in use at the Council were compared. Review of the long-term model used in RPM and the short-term model used in RA were reconciled and found to present a consistent view of the

near term future.

Relevance: Improving modeling capability at Council.

Workplan: Action Plan Item Analysis 4.

Background: This action item called for review and enhancement of peak load


forecasting models. Action item was completed in cooperation with Council staff, Demand Forecasting Advisory Committee, Resource Adequacy Advisory Committee - forecasting models were reconciled. This task reviewed and reconciled peak load forecasting methods used for long-term resource planning (RPM) and short-term Adequacy Assessment

(Genesys) analysis.

Report on Action Item Analysis 4

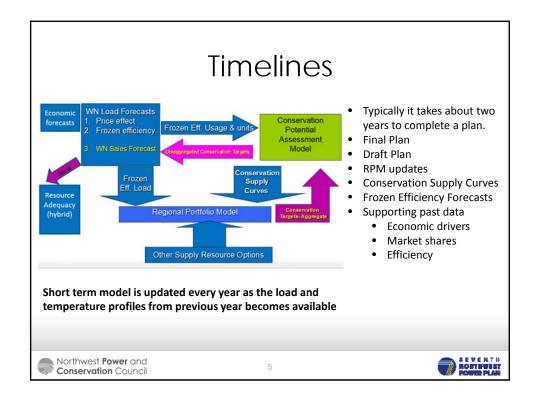
Review and Comparison of Peak Load Forecasts

Massoud Jourabchi July 11, 2017

Action Item ANALY- 4

- Review and enhancement of peak load forecasting.
- This task reviews and reconciles peak load forecasting methods used for long-term resource planning (RPM) and short-term Adequacy Assessment (Genesys) analysis.
- This task should be completed before the next Resource Adequacy Assessment.

Peak Load Forecasting Methods


- Suitable method depends on needs of the forecast
- Next hour, next day, next month, next year, longer
 - For shorter-terms econometric load forecasting methods
 - For longer terms Simulation methods

3

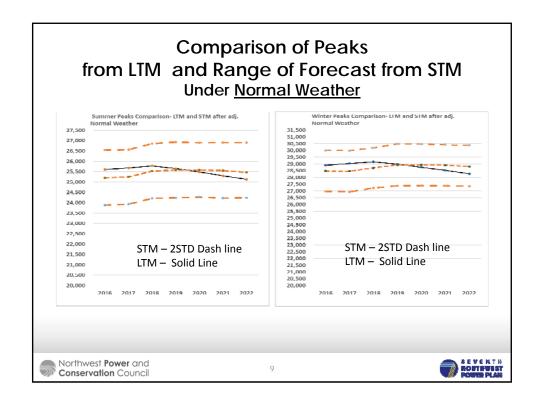
Differences between LTM and STM (Climate and Weather Forecasts) 3-5 year forward look, Resource 20year horizon, Conservation supply Intended Applications assessment, tracking enduse efficiency. Adequacy A policy and load forecast model Econometric modeling, Produces different forecasts, Embedded Energy Efficiency, no Explicitly knows about future codes and explicit knowledge of future standards, other trends. policies, codes/standards. Impact of weather In historic calibration period uses annual CDD Explicit account of past daily and and HDD. hourly temperature conditions For the forecast period uses Normal weather. Forecasted loads are weather normalized Focus Forecast of monthly Energy, Peak, minimum Forecast of Hourly Energy and Peak under past temperature conditions Data update Every 5 years, by sector, enduse, technology, Annual, region-wide by state Northwest **Power** and **Conservation** Council

What LTM and STM know and do not know **Before Future Energy Future** Past Energy Efficiency Efficiency Standards Adjustments Past Standards LTM (FE) 2012 Vintage 2012 Vintage Yes Yes 2015 Vintage 2015 Vintage STM No No Adjustments needed EE in 2013, Standards in 2013, LTM 2014, 2015 2014, 2015 No Adj. No Adj. Expected **Embedded Embedded Expected EE Standards Standards** 2016-2022 Northwest **Power** and **Conservation** Council

Adjustments to LTM

	Reduction to LTM for EE in	2013, 2014 and 2015	278+264+287=829	aMW	
	Increase to LTM for additi	onal DSI post 2018	421-338=83	aMW	
1	LTM WN Summer Peak reduction MW	LTM WN Winter Peak Reduction MW	Ratio of Summer Peak to Average Energy	Ratio of Winter Peak to Average Energy	
2016	1,091	1,214	1.316	1.464	
2017	1,088	1,209	1.313	1.459	
2018	1,169	1,288	1.310	1.453	
2019	1,171	1,283	1.312	1.448	
2020	1,172	1,279	1.314	1.443	
2021	1,174	1,274	1.316	1.437	
2022	1,176	1,269	1.318	1.430	

7



Adjustment to STM

	WN Load net of DSI load	Embedded Estimated Conservation Cumulative (+)	Impact of Standards post 2015 Cumulative (-)	Power Plan Conservation Target Cumulative	Cumulative change in Load aMW	Load after adjustment for Conservation and Standards	Cumulative percent Change in WN load (Multiplier value)
2016	20,691	311	129	147	36	20,727	0.17%
2017	20,841	633	262	357	14	20,855	0.07%
2018	20,958	965	382	575	8	20,967	0.04%
2019	21,047	1,303	515	821	(33)	21,015	-0.16%
2020	21,122	1,647	636	1,097	(85)	21,037	-0.40%
2021	21,153	1,996	738	1,398	(140)	21,014	-0.66%
2022	21,204	2,352	832	1,715	(195)	21,009	-0.92%

Northwest **Power** and **Conservation** Council

SEVERTE HOST POWER PLAN

Conclusion

Once adjustments for the unknowns to each model are made LTM forecast of peak loads provided to RPM and the STM forecast of peak loads provided to Genesys model have a comparable view of the nearterm future.

