Henry Lorenzen Chair Oregon

Bill Bradbury Oregon

Guy Norman Washington

Tom Karier Washington

W. Bill Booth Vice Chair Idaho

James Yost

Jennifer Anders Montana

> Tim Baker Montana

December 5, 2017

MEMORANDUM

TO: Fish and Wildlife Committee Members

FROM: Council staff

SUBJECT: Atlas: Strategic Prioritization of Habitat Restoration Actions

BACKGROUND:

Presenter: Dave Kaplowe, Prioritization and Strategic Planning Lead for Bonneville

Power Administration.

Summary: Bonneville has worked collaboratively with partners in the Grande Ronde,

Imnaha, Clearwater, and John Day subbasins to develop and implement a

strategic, evidence-based habitat restoration prioritization framework

known as Atlas.

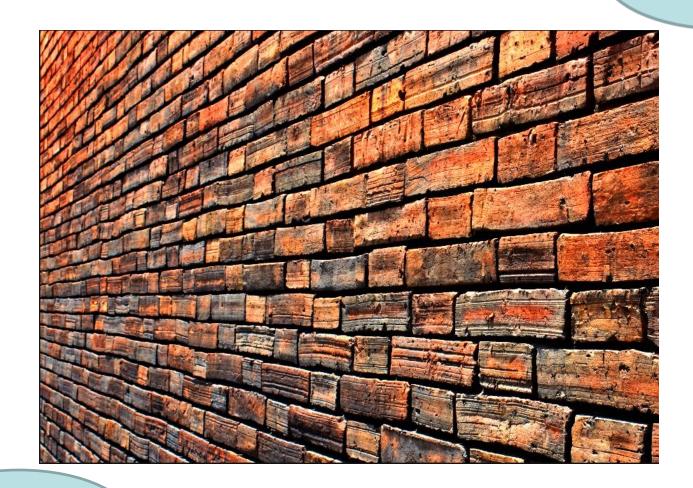
Atlas is a multi-criteria decision analysis framework that utilizes the best available fish and habitat data, peer-reviewed published research, and local knowledge to determine the highest priority areas and actions for habitat restoration within a group of watersheds. The local team of biologists, geomorphologists, and engineers then identifies, maps, and prioritizes hundreds of restoration opportunities throughout each watershed for implementation during a period of 20 or more years. This long term, strategic action plan maximizes biological benefit for fish species, increases the return on the financial investment, enhances adaptive management, and attracts additional funds.

Atlas – Evidence Based Prioritization Framework December 12, 2017

Objectives

- Provide Atlas summary
- Discuss Atlas evolution and adaptation

Atlas Emergence


Improve opportunistic approach

Improve use of evidence

Implementation



Research

Improve collaboration

Expenditures vs. biological benefit, ROI



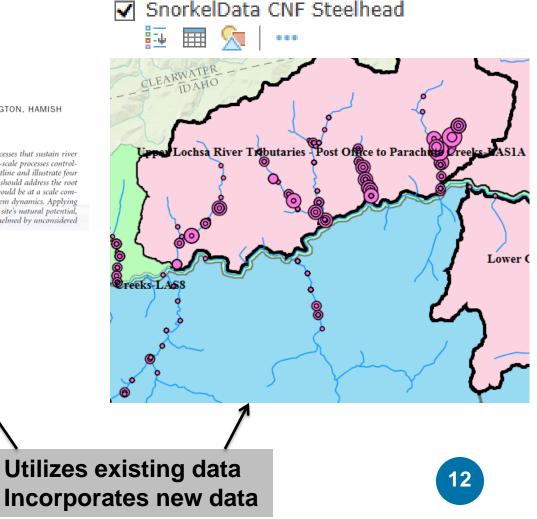
Atlas Definition

Evidence Based Prioritization Framework

Determine priority areas

Determine priority actions

Score, rank actions


BSR	BSR ranking	Limiting Factors (Priority & Quantity Addressed)	Restoration Action Priority	Climate Change	Natural Process (Beechi et al)	Total Biological Benefit Score	
BSR: LAS-1a	Tier I	1	1	0		5	7
BSR: LAS-1a	Tier I	5	1	1		5	12
BSR: LAS-1a	Tier I	1	1	0		5	7
BSR: LAS-1a	Tier I	1	1	1		5	7

Adaptive Management

Process-based Principles for Restoring River Ecosystems

TIMOTHY J. BEECHIE, DAVID A. SEAR, JULIAN D. OLDEN, GEORGE R. PESS, JOHN M. BUFFINGTON, HAMISH MOIR, PHILIP RONI, AND MICHAEL M. POLLOCK

Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems. Ecosystem conditions at any site are governed by hierarchical regional, watershed, and reach-scale processes controlling hydrologic and sediment regimes; floodplain and aquatic habitat dynamics; and riparian and aquatic biota. We outline and illustrate four process-based principles that ensure river restoration will be guided toward sustainable actions: (1) restoration actions should address the root causes of degradation, (2) actions must be consistent with the physical and biological potential of the site, (3) actions should be at a scale commensurate with environmental problems, and (4) actions should have clearly articulated expected outcomes for ecosystem dynamics. Applying these principles will help avoid common pitfalls in river restoration, such as creating habitat types that are outside of a site's natural potential, attempting to build static habitats in dynamic environments, or constructing habitat features that are ultimately overwhelmed by unconsidered system drivers.

Not data collection

Inform future data collection

Supplementation of Existing Plans

Sub-basin Plan (10,000 ft.)

Recovery Plan (5,000 ft.)

Expert Panel (1,000 ft.)

Atlas (100')

Project Proposal

MCDA

Recovery Plan

Snorkel Surveys Redd Counts

HSI

Sediment

Spawning Surveys **EDT**

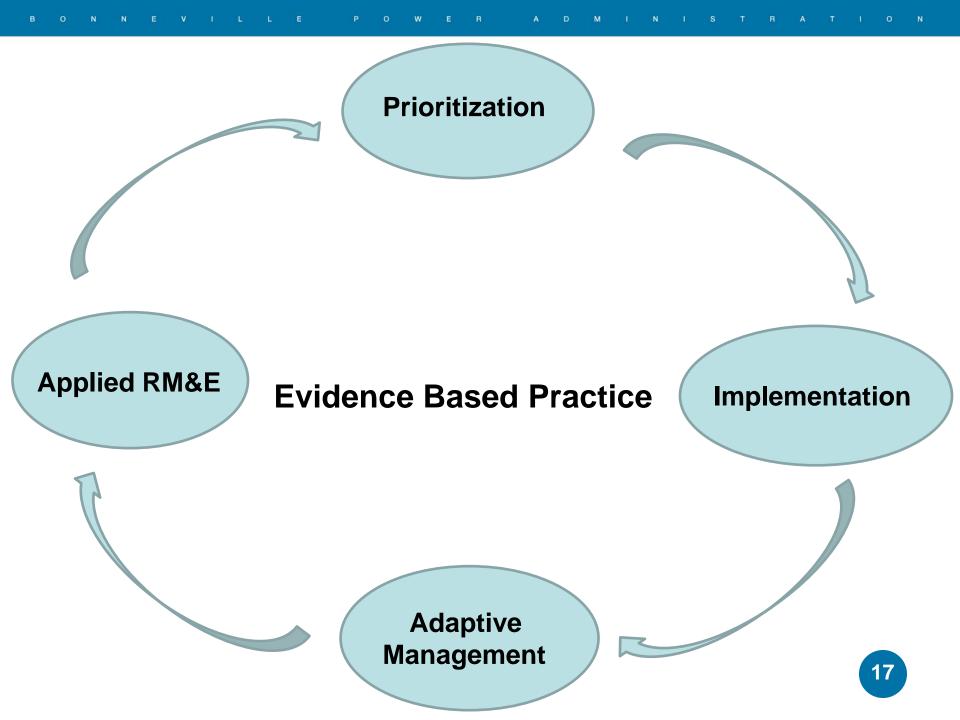
Expert Panel

Temperature Data

Subbasin Plan

Riparian

QRF


Electrofishing

eDNA

Atlas Objectives

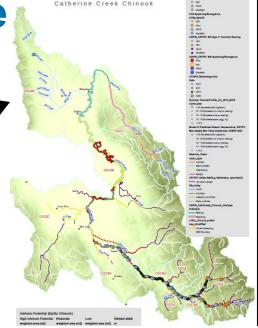
Increase return on investment

Atlas Development

Partner Outreach


- ✓ Atlas explanation
- Discussion

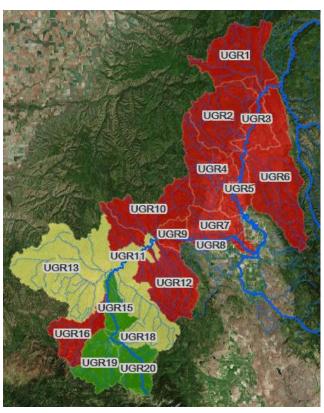
GRANDE RONDE MODEL WATERSHED



Data Organization + Schedule

- Data consolidation
- Conversion to GIS visual format

Determine meeting schedule

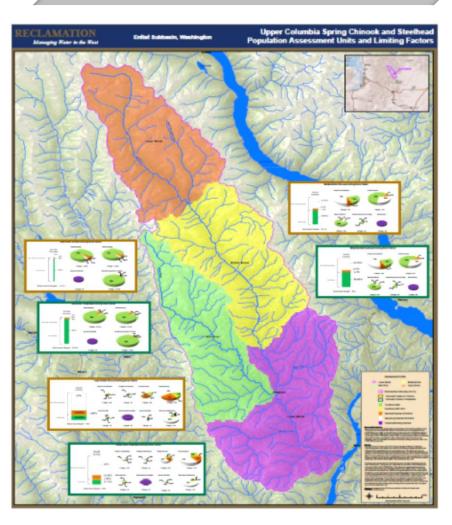


January	February	March	April	May
Meeting #1 (BSRs, Periodicity, Utilization)		Meeting #2 (Limiting Factors, Restoration Actions)	We are here Meeting #3 (BSR Prioritization)	Meet (IT – So ctions withir

Determine Subwatersheds

Fish Periodicity

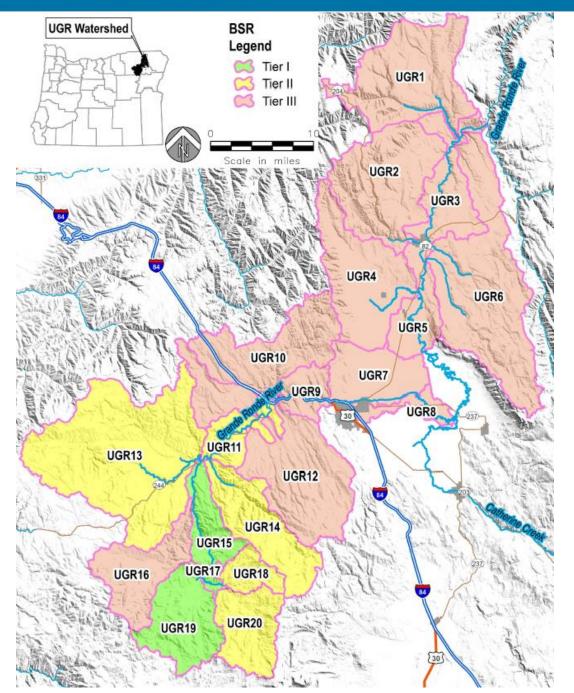
Limiting Life Stage



		Je	an	Feb		Mar	
Species	Life Stage	1-15	16-31	1-15	16-28	1-15	16-31
	Adult Immigration						
	Adult Holding						
	Adult Spawning						
Steelhead (Summer)	Incubation						
	Emergence						
	Juvenile Rearing						
	Juvenile Emigration						
	Adult Immigration						
	Adult Holding						
	Adult Spawning						
	Incubation						
Spring Chinook Salmon	Emergence						
	Juvenile Rearing						
	Juvenile Emigration Age 0						
	Juvenile Emigration Age 1					Age 1	Age 1
	Adult Immigration						
	Adult Holding						
	Adult Spawning						
Bull Trout (Fluvial)	Incubation						
	Emergence						
	Juvenile Rearing						
	Juvenile Emigration						

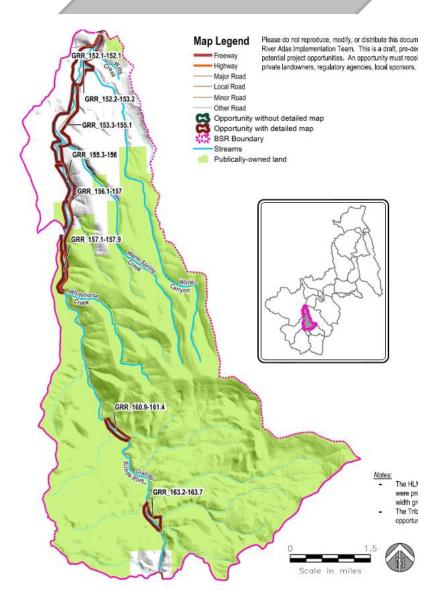
Fish Use 8									
Fish Utilization									
	Chinook	Steelhead	Bull Trout						
Adult Immigration	Н	L	M	Thermal t					
Adult Holding	Н	L	L	CHS Pre-s					
Spawning / Incubation / Emergence	Н	M	N/A	Some STS					
Juvenile Emigration	L	L	M						
Summer Rearing	Н	Н	N/A						
Winter Rearing	Н	Н	Н	Overwinte					

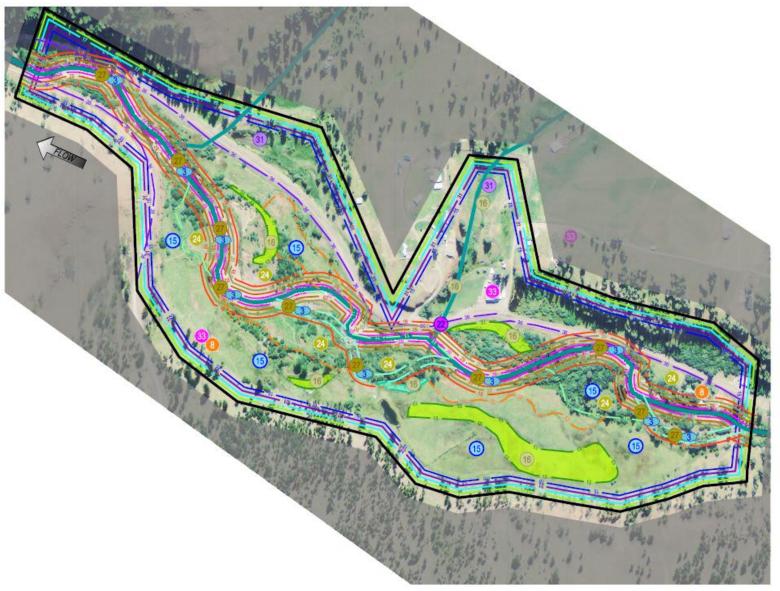
Limiting Habitat Factors


Restoration Actions

Subwatershed Prioritization

	Inputs for Ability to Affect			Species	Impact	Ability to Affect				
		Change		Scoring		Change Scoring				
	Geomorphic Potential Classification	Current Condition Classification	Future Condition (Climate Change)	U-Score (Critical use / limiting life stage, bottleneck)	P-Score (Presence Absence- Current Production Area)	Geomorphic Score (gradient, lateral confinement)	Current Condition Score	Future Condition (Climate Change)	Cummalative Score (Inputs converted to a number then summed)	Ranking (Tier I,II,III)
IRC-1 L	Low	Fair	Poor	5	20	10	20	2.5	58	
IRC-2	Low	Good	Good	▼ 5	20	10	1 5	7.5	58	
BSC-1 L	Low	Fair	Poor	8	16	10	20	2.5	57	
BSC-2 L	Low	Fair	Poor	10	20	10	20	2.5	62	
MCC-1	Medium	Fair	Fair	3	9	15	20	5	52	
MCC-2 L	Low	Fair	Fair	5	19	10	20	5	58	
WRC-1	Medium	Excellent	Excellent	5	19	15	5	10	53	
MRC-1 L	Low	Good	Fair	4	14	10	15	5	48	
MRC-2 L	Low	Excellent	Excellent	6	19	10	5	10	49	
DEER L	Low	Excellent	Good	4	14	10	5	7.5	40	




Atlas Implementation

Scope + Map Actions

Restoration opportunities = suites of actions

GRR_152,2-153,2						
TAC#	Restoration Activity					
1	Protect Land & Water					
2	Channel Reconstruction					
3	Pool Development					
8	Relocate Infrastructure					
11	Perennial Side Channel					
12	Secondary Channel					
13	Floodplain Pond-Wetland					
14	Alcove					
15	Hyporheic Off-Channel					
16	Beaver Restoration					
17	Riparian Fencing					
18	Riparian Buffer Planting					
20	Remove Non-Natives					
22	Barrier or Culvert Repair/Removal					
24	Add Nutrients					
27	LWD Placement					
28	Modify or Remove Armoring					
29	Restore Banklines w/LWD or Bio					
31	Improve Thermal Refugia (Springs)					
33	Reduce - Mitigate Point Sources					
36	Road Grading/Drainage Improvemen					

Restoration opportunities = suites of actions

GRR_152,2-153,2							
TAC#	Restoration Activity						
1	Protect Land & Water						
2	Channel Reconstruction						
3	Pool Development						
8	Relocate Infrastructure						
11	Perennial Side Channel						
12	Secondary Channel						
13	Floodplain Pond-Wetland						
14	Alcove						
15	Hyporheic Off-Channel						
16	Beaver Restoration						
17	Riparian Fencing						
18	Riparian Buffer Planting						
20	Remove Non-Natives						
22	Barrier or Culvert Repair/Removal						
24	Add Nutrients						
27	LWD Placement						
28	Modify or Remove Armoring						
29	Restore Banklines w/LWD or Bio						
31	Improve Thermal Refugia (Springs)						
33	Reduce - Mitigate Point Sources						
36	Road Grading/Drainage Improvement						

Rank Opportunities

Basic Informat		Biolog	gical Cı	riteria				
Opportunity Name	Status	BSR	BSR ranking	Limiting Factors (Priority & Quantity Addressed)	Restoration Action Priority	Climate Change	Natural Process (Beechi et al)	Total Biological Benefit Score
BSR: LAS-1a								
Opportunity: Waw'aa'lamnime Wood Addition	Not started	BSR: LAS-1a	Tier I	1	1	0	10	12
Opportunity: Music Line Channel Relocation	Not started	BSR: LAS-1a	Tier I	4	1	1	10	16
Opportunity: Doe Creek Wood Addition	Not started	BSR: LAS-1a	Tier I	1	1	0	10	12
Opportunity: Western Pacific Land Acquisition	Not started	BSR: LAS-1a	Tier I	0	1	1	10	12
BSR: LAS-2a								
Opportunity: 111 Road Decommissioning	Not started	BSR: LAS-2a	Tier I	2	3	1	10	16
Opportunity: Walton Creek Hatchery Intake	Not started	BSR: LAS-2a	Tier I	0	0	0	10	11
Opportunity: Beave Ridge Road 368 Improvement	Not started	BSR: LAS-2a	Tier I	1	1	0	10	12
Opportunity: 111 Road Culvert Replacement/Removal	Not started	BSR: LAS-2a	Tier I	2	4	1	10	17
Opportunity: Road 359 and 360 Road Improvement	Not started	BSR: LAS-2a	Tier I	2	3	0	10	15
Opportunity: Elk Summit Road	Not started	BSR: LAS-2a	Tier I	2	3	0	10	15
Opportunity: Western Pacific Land Acquisition	Not started	BSR: LAS-2a	Tier I	0	1	1	10	12
BSR: LAS-2b								
Opportunity: Elk Summit Road Improvement	Not started	BSR: LAS-2b	Tier III	0	1	0	10	11

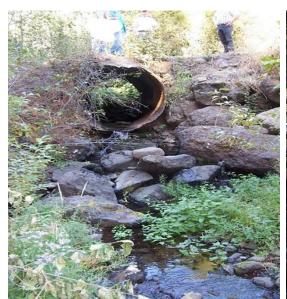
Assign Lead

Evaluate Feasibility

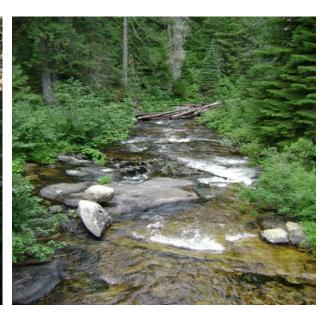
					Fea	sibility	/ Crite	ria	
Landowner/Public Willingness	Partnership Capacity	Environmental Compliance (NEPA, ESA, NHPA)	Site Access	Construction Feasibility (Cost, Complexity)	Project Timing (Contract Periods, Planning, Funding)	Probability (Biolocial Goals and Objectives)	Probability (Public Safety Goals and Objectives)	Overall Feasibility Rating	Comments

Implement Actions

Atlas Evolution

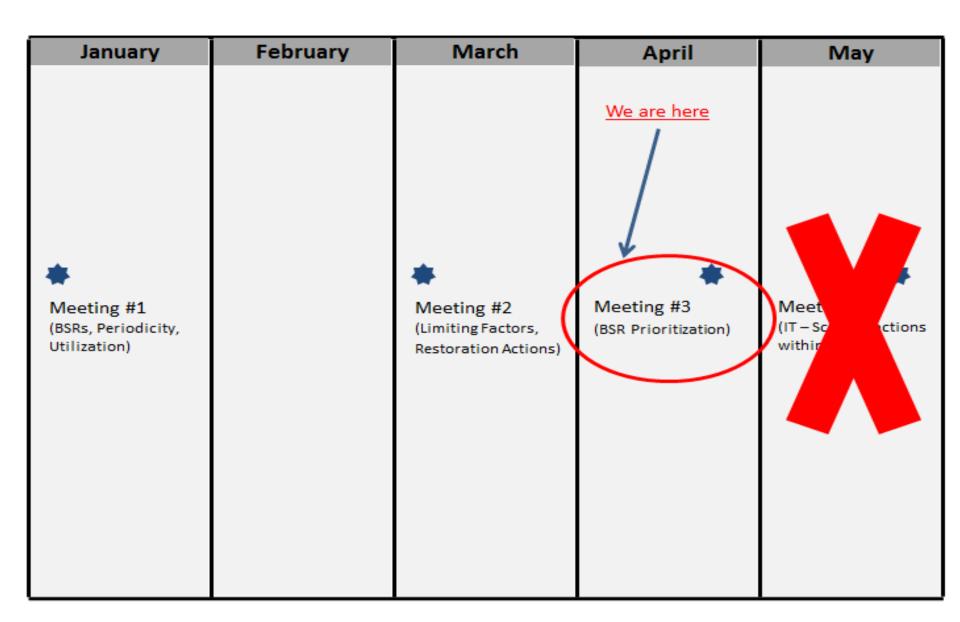

Success

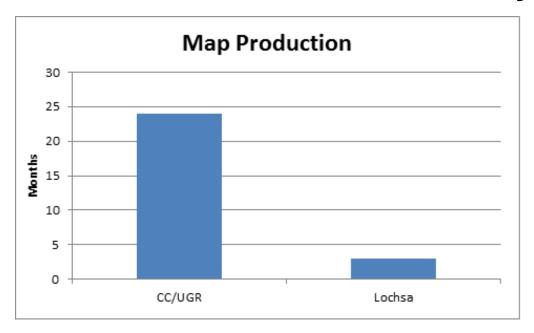
Historic Request

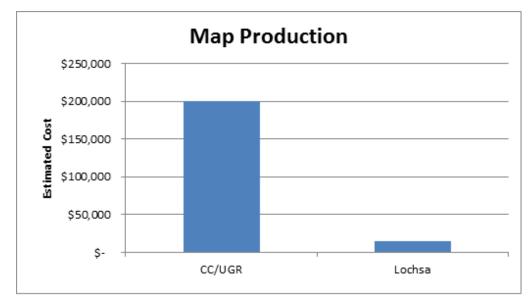


Historic Collaboration

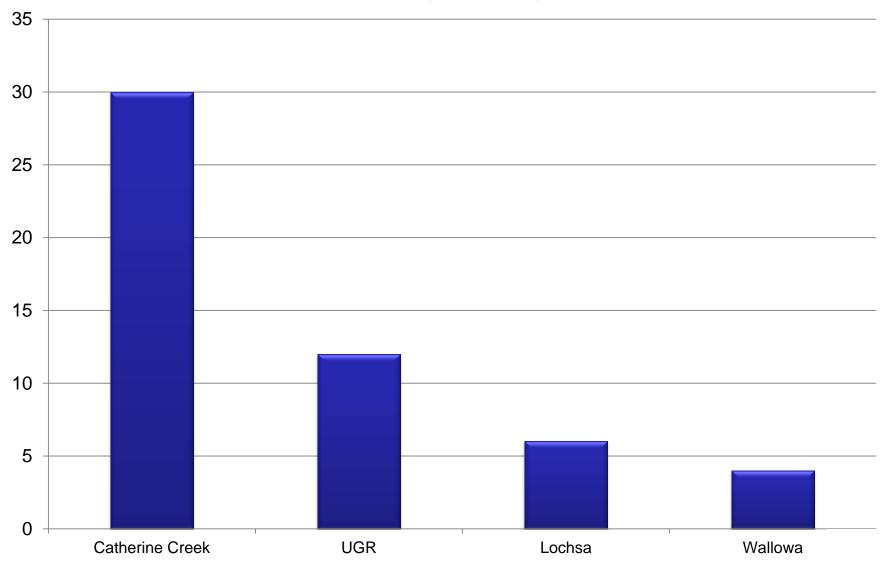
- "We've never had all the partners in the same room." NPT
- "I've worked with the researchers more in the last three months than I have in 12 years." NPT
- "Collaboration is king." USWCD

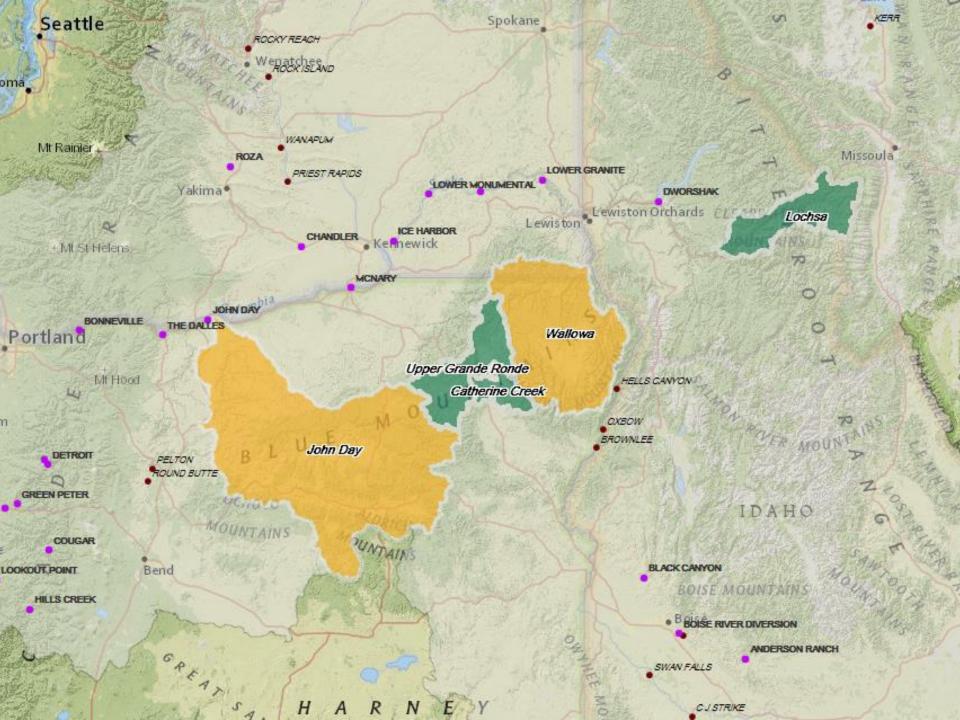


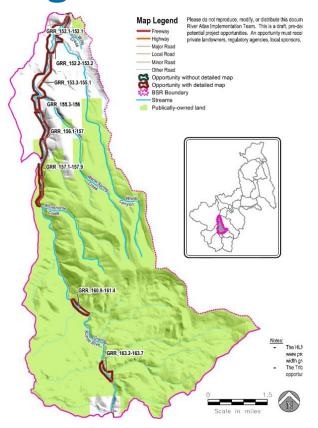


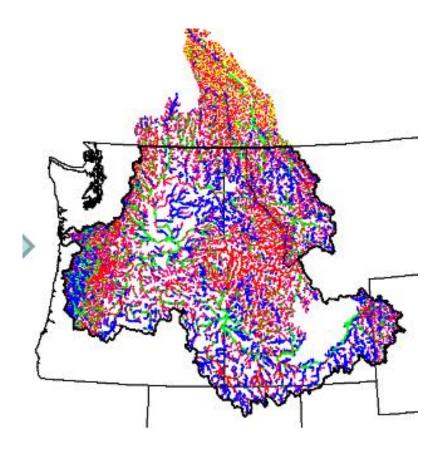

BONNEVILLE POWER ADMINISTRATION

Efficiency


Time, effort, and financial efficiency




BONNEVILLE POWER ADMINISTRATIO!


Time (months)

Integration

- Consistent use of CB network data
- Adaptable prioritization mechanism across CB
 - Maximum biological benefit
 - ☐ Enhanced ROI

Atlas Leadership

Locally led, owned, adapted

BONNEVILLE POWER ADMINISTRATION

Cost

BONNEVILLE POWER ADMINISTRATION

References

Beechie, T., Imaki, H., Greene, J., Wade, A., Wu, H., Pess, G., Roni, P., Kimball, J., Stanford, J., Kiffney, P., Mantua, N. 2012. Restoring salmon habitat for a changing climate. *River Research and Applications* 29: 939-960.

Beechie, T. J., G. Pess, P. Roni, and G. Giannico. 2008. Setting River Restoration Priorities: A Review of Approaches and a General Protocol for Identifying and Prioritizing Actions. *North American Journal of Fisheries Management* 28:891–905.

Beechie, T., Sear, D., Olden, J., Pess, G., Buffington, J., Moir, H., Roni, P., Pollock, M. 2010. Process-based Principles for Restoring River Ecosystems. *Bioscience* 60: 209-222.

BPA (Bonneville Power Administration). 2015. Atlas Implementation Guidelines - Catherine Creek and Upper Grande Ronde River. June 8, 2015.

Roni, P., T.J. Beechie, R.E., Bilby, F.E. Leonetti, M.M. Pollock, and G.P. Pess. 2002. A review of stream restoration techniques and a hierarchical strategy for prioritizing restoration in Pacific Northwest watersheds. *North American Journal of Fisheries Management* 22:1-20.