Richard Devlin Chair Oregon

Ted Ferrioli Oregon

Guy Norman Washington

Patrick Oshie Washington

Bo Downen Vice Chair Montana

Jennifer Anders Montana

> Jim Yost Idaho

Jeffery C. Allen Idaho

February 4, 2020

MEMORANDUM

- TO: Council Members
- FROM: Gillian Charles
- SUBJECT: Pacific Northwest Zero-Emitting Resources Study

BACKGROUND:

- Presenter: Greg Cullen, Energy Services and Development General Manager at Energy Northwest
- Summary: Energy Northwest recently commissioned an E3 study evaluating the role of zero-emitting resources in a deeply decarbonized Northwest regional power system. The results of the study compare the relative system costs in 2045 between traditional renewable/storage/gas portfolios *vs.* portfolios with a more robust zero-emitting resource fleet (*i.e.* a relicensed Columbia Generating Station along with potential new nuclear generation). Mr. Cullen will share these results along with additional information regarding small modular reactor (SMR) technology.
- More Info: Energy Northwest shared the results of this study with the Generating Resources Advisory Committee in December 2019. NuScale Power also presented information about their Small Modular Reactor technology at that meeting. Both presentations can be seen at: <u>https://www.nwcouncil.org/meeting/generating-resources-advisory-</u> <u>committee-december-6-2019</u>.

ENERGY NORTHWEST Energy Northwest A not-for-profit **Municipal Corporation** Asotin County PUD **Clark Public Utilities** Klickitat County PUD Seattle City Light **Benton County PUD** Ferry County PUD Lewis County PUD **Skamania County PUD** Chelan County PUD Franklin County PUD Mason County PUD 1 Snohomish County PUD **City of Port Angeles** Grant County PUD **Tacoma Public Utilities** Mason County PUD 3 Wahkiakum County PUD **City of Richland Grays Harbor County PUD** Okanogan County PUD City of Centralia Jefferson County PUD Pacific County PUD Whatcom County PUD Clallam County PUD 1 **Kittitas County PUD** Pend Oreille County PUD ENERGY NORTHWEST

REALERGY NORTHWEST

Energy Northwest Energy Initiatives

- Demand Side Management
 - Demand Response
 - Demand Voltage Reduction
- Electrification of Transportation
- Renewable Energy
- Energy Storage
 - Short term (solar)
 - Longer term (wind, nuclear)
- New Nuclear

ENERGY NORTHWEST **Scenario Summary** 2050 Resource Use 6-hr Natural Gas 2018 2050 200 29 Imports 180 Coal 160 46 4-hr Storage 140 4-h 4-hr DR 120 gW 4-hr 29 100 Solar 97 80 Wind 60 48 Bio/Geo 23 40 Nuclear 20 Hydro 2018 2050 60% Red 80% Red 90% Red 98% Red 100% Red Baseline Baseline Zero Carbon able Capacity (GW) 13 34 49 59 83 143 Annual Renewable Curtailment (%) Low Low 4% 10% 21% 47% Gas Capacity (GW) 32 26 24 20 14 0 Gas Capacity Factor (%) 46% 27% 16% 9% 3% 0% 8 Energy+Environmental Economics ¹CPS+ % = renewable/hydro/nuclear ge on divided by retail electricity sales 10 ²GHG-Free Generation % = I

Energy Limited or Variable Zero-Emitting Resources	"Firm" Zero-Emitting Resources
Flexible resource that can help balance wind and solar	Columbia Generating Station (CGS) Existing zero-GHG firm capacity
Wind Inexpensive energy, high quality resource, but variable	Small Modular Reactors (SMRs) Firm, dispatchable zero-GHG generation
Solar Inexpensive energy, high quality resource in the West, but variable	Biomethane Zero-GHG fuel for existing infrastructure, not yet widely commercial, competing uses
Rapidly decreasing costs, but energy limited	Carbon Capture and Sequestration

Resource O Cost and Operat	ptions ^{ions}		
Resource Type	2045 Capital Cost (2018 \$/kW)	2045 Fixed O&M Cost (2018 \$/kW-yr)	Operations
Utility-Scale Solar PV (Single-axis tracking)	\$ 980	\$ 12	No fuel cost
Onshore Wind (TRG6 - ~36% CF)	\$ 1,080	\$ 35	No fuel cost
CGS Relicensing	\$ 406	\$ 162	"Must run" with scheduled maintenance outages
NREL ATB Nuclear Small Modular Reactors (SMR)	\$ 5,650	\$ 99	Uranium fuel; Heat rate of 10,000 Btu/kWh
NuScale "Nth of a Kind" SMR	\$ 4,900	Similar to NREL	Uranium fuel; Heat rate of 9,000 Btu/kWh
Gas Combustion Turbine (Frame)	\$ 850	\$ 12	NG fuel; Heat rate 12,000 Btu/kWh
CCGT with Carbon Capture and Storage (Post-Combustion 90-100% Capture)	\$ 1,700	\$ 33	NG fuel; Heat rate 8,000 Btu/kWh
4-hour Li-Ion Battery	\$ 590	\$2	Round trip efficiency of 92%
Biogas (a drop-in fuel to gas units)	N/A	Equivalent to Gas CT	Very high fuel cost ~32\$/MMBTU
Energy+Environmental Economics			20

Transmission Requirements by Scenario

New Transmission Requirements at 100% GHG Reductions

+ The transmission requirements	
of each scenario depend on the	
amount renewables built	
Literative bits because the DE	

- In the highest case, the RE + Storage scenario, 93 GW of capacity requires new transmission to be deliverable to loads
- The lowest transmission build requirements are in the NuScale cases

New Iransinission Requirements at 100% one Reductions				
Scenario	Case	Capacity Requiring New Transmission		
New Gas Allowed	NREL ATB	12 GW		
	NuScale	8 GW		
No New Gas	NREL ATB	15 GW		
	NuScale	5 GW		
Zero-GHG	RE + Storage	93 GW		
	NREL ATB	18 GW		
	NuScale	5 GW		

+ This study does not include a complete accounting of incremental transmission requirements of connecting zero-emitting firm resources. The transmission needs of these resources will depend on the degree to which they can be built at existing sites or near to existing paths.

Energy+Environmental Economics

39

 (\mathbf{E})

	Variable Renewables and Batteries	Nuclear Technology Resources	Fossil-Based, Low-Carbon Resources
Land Use Requirement	High Low energy density of solar and wind require large surface coverage.	Low SMRs can be sited at existing nuclear generation sites or on limited land area as a result of high energy density of SMR units.	Mid Fossil fuel extraction, carbon sequestration and biomethane growth (assumed from waste crops and residues
Waste Impact	Mid Variety of materials required for PV, wind turbine build, and Li-ion batteries; significant waste challenges for failed PV and end-of-life Li-ion batteries and wind turbines.	Mid Used nuclear fuel storage technology well- developed and highly regulated and can be safely stored on site in cast iron tanks for 100+ years; heavy materials required for new units.	High GHGs and non-GHG pollutants resulting from combustion.
Resiliency	Good Renewables diffuse the impact of a single outage due to modular units.	Good Low volatility of uranium price, fuel on-site, SMRs further limit the impact of a single unit outage; nuclear plants designed to withstand severe weather events.	Average Subject to volatility of natural gas price and availability of resource via Northern pipeline.
Equipment lifetime	Wind turbines - 25-30 yrs; Solar PV panels - 25-30 yrs w/ inverter replacement every 15 years; Li-ion batteries - 10-15 yrs, function of number of total cycles.	SMRs are licensed for 40 years and likely renewable to 60 years and perhaps beyond.	Gas generating plants are typically designed to last 35-40 yrs but can be recommissioned to last 60 + years.
State & Federal	ITC (end 2021) & PTC (end 2022)	Federal PTC and incentives for nuclear technology development	45Q tax credit for carbon sequestration

😪 ENERGY NORTHWEST

2021 Power Plan Recommendations

- Modeling needs to acknowledge and incorporate established and projected carbon constraints
- Carbon constrained modeling needs to include an accurate reference plant for small modular reactors
- Modeling should incorporate potentials for additional/extended generation from Columbia Generating Station
 - Extended Power Uprate (EPU) increases output by ~150MW
 - Subsequent License Renewal (SLR) extends operation to 2063

