Wind and Solar Effective Load Carrying Capability

RAAC Steering Committee Meeting
March 9, 2015
Methodology to Assess Annual ELCC

- Begin with a system with no wind
- Use Monte-Carlo simulation to assess average annual curtailment
- Add an increment of (shaped) load – curtailment will increase
- Add increments of new resource until the average curtailment equals that in the base
- \[ELCC = \frac{\text{load}}{\text{amount of new resource}} \]
ELCC Results (+200 MWa load)

Illustrative Results

- 200 MWa Load, 500 MW Wind
 - ELCC = 26.4%

- 200 MWa Load, 1000 MW Wind
 - Base Case Curtailment
Annual ELCC – Synthetic vs. Historical Data

Illustrative Results
Average and Incremental ELCC
Synthetic Data

Preliminary Results
Observations

- ELCC declines with increasing amounts of wind because system flexibility is used up
- Eventually wind ELCC will flatten out
- Average annual wind generation is about 32%, yet aggregate ELCC is closer to 20%
 Thus, can’t plan on average wind generation

- Adding storage should increase ELCC
- Adding more diverse wind generation should also increase aggregate ELCC
Capacity ELCC

- Same method as for energy ELCC
- Observe simulated curtailments over peak hours only
 - Single hour
 - Sustained period
- As an estimate, look at wind generation during worst simulated curtailments
 - For the 2019 assessment
 - Over the worst 10% curtailments
 - Wind generation was 5%
Solar ELC C

- Same method can be used
- Need data
 - Historic data set may be too small
 - Synthetic data (based on historic) could be developed (e.g. like the wind data)
 - Perhaps wind speed data could be used?