What’s Up in Hawaii?

Pacific Northwest Demand Response Project
February 25, 2015
Hawaii Electric Systems
4 electric utilities; 6 separate grids

Kauai Island Utility Cooperative
27 MW PV (24 MW in development)
System Peak: 78 MW
Customers: 32,700

Maui Electric
Maui: 60MW PV / 72MW Wind
System Peak: Maui 200 MW
Lana’i: 1MW PV
System Peak: Lana’i: 5 MW
Moloka’i: 1.2 MW PV
System Peak: Moloka’i: 5.5 MW
Customers: 68,000

Hawaiian Electric
221 MW PV / 100 MW Wind / 69 MW WTE
System Peak: 1,100 MW
Customers: 300,000

Hawaii Electric Light
39 MW PV / 30 MW Wind / 38 MW Geothermal / 16 MW Hydro
System Peak: 190 MW
Customers: 81,000

Source: Hawaii Natural Energy Institute
A Tiny Bit of History

• Oahu: centralized power since 1891
• Other islands originally sugar mill based systems; island-wide after WWII.
• IRP process and EE Funding created 1992
 – Cost Recovery, LRAM, Shareholder Incentive; Gamed by HECO from 1994 to 2006
• Decoupling plus third-party EE in 2011.
1996-1998 Big Island Crisis

- Puna CT failed; 2 years to reconstruct
- Negative reserve margin
- Consumer Advocate engaged me
 - Hotel, water, sewer standby generators
 - Install diesels at wind projects
 - Replace all light bulbs and shower heads
Hawaii Clean Energy Initiative
USDOE / Hawaii MOU 2008

• High oil costs devastating to state economy.
• 35% state solar tax credit.
• 40% RPS by 2030.
• Step up of EE

Energy solutions for a changing world
Cost Drivers In Hawaii

Highest rates and bills in USA

$.35 - $.40/kWh; $200/month

vs: $.125/kWh; $100/month

30% Federal + 35% State Tax Credit
Grid Parity in Hawaii: We’re A Little Past That Point!
Residential Solar PV

• Currently 11% saturation
 – ~20% in Single Family
• IEEE Limits Long Passed
 – 85% of Min Load
 – 100% of Min Daytime Load
 – 120% of Min Daytime Load
• Proposed: 250% of Min Daytime Load
 – With smart inverters
Ramping Issues Becoming Severe
April 30, 2014: Four Orders of the Apocalypse

- Renewable Standards Working Group
- DSM Program Review
- MECO Rate Case - Decoupling
The Commission has not observed an “acceptable course correction” and there is not sufficient evidence, at this time, of progress by the HECO Companies towards developing and implementing a sustainable business model. By contrast, the Commission does note that the state’s other electric utility has clearly articulated a strategic vision and made substantial progress in achieving their goals over the same time period.

- Creating a 21st Century Power System
- Creating Modern T&D Grids
- Policy and Regulatory Reforms
- Focus on Performance Incentive Measures
- Revise rate design to address PV issues
Demand Response Direction

• Can benefit company and customers, by enabling capital avoidance and lower cost
• Develop detailed estimates for 5, 10, 20 yrs
• Evaluate third-party implementation
• Wide range of benefits: peak reduction, load shifting, frequency management, spinning reserves, ramping.
Existing Demand Response Programs

• Residential (RDLC):
 – 32,350 water heaters
 – 3,750 AC units
 – 15 MW

• Commercial
 – Large C&I with Generators
 – Small C&I water heat and AC
 – 13 MW
Existing DR Programs (cont’d)

- Fast DR (Oahu and Maui)
 - 38 / 4 customers
 - 6 MW

<table>
<thead>
<tr>
<th>Program</th>
<th>Participating Load (customer level impact)¹ (MW)</th>
<th>2013 Load Impact Estimate (MW)</th>
<th>2013 number of events and tests</th>
<th>2013 Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDLC</td>
<td>14.8²</td>
<td>7.2³⁴</td>
<td>58 events + 19 tests</td>
<td>75 hr 30 min</td>
</tr>
<tr>
<td>CIDLC</td>
<td>12.8</td>
<td>12.3³</td>
<td>3 events + 2 tests</td>
<td>1 hr 13 min</td>
</tr>
<tr>
<td>Fast DR (Hawaiian Electric)</td>
<td>6.1</td>
<td>0.7³</td>
<td>54 tests</td>
<td>33 hr 15 min</td>
</tr>
<tr>
<td>Fast DR (Maui Electric)</td>
<td>0.2</td>
<td>0.15⁵</td>
<td>29 tests</td>
<td>19 hr 30 min</td>
</tr>
</tbody>
</table>
Maui Wind

- 200 MW peak demand
- Night load ~80 MW
- 72 MW wind
- Minimum thermal load
- Spilling ~15%

DR Report:
6,200 water heaters
What Needs Can DR Provide?

<table>
<thead>
<tr>
<th>Grid Service Requirements</th>
<th>Response Speed* (Mainland)</th>
<th>Response Speed** (Hawaii)</th>
<th>Response Duration</th>
<th>Potential for DR?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used to meet demand plus reserve margin; supplied by on-line and off-line resources, including interruptible load</td>
<td>Minutes</td>
<td>scheduled in advance by system operator</td>
<td>If called, must be available for at least 3 hours</td>
<td>✓</td>
</tr>
<tr>
<td>Ancillary Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contingency Reserve**</td>
<td>Seconds to <10 min</td>
<td>Within 7 cycles of contingency event</td>
<td>Up to 2 hours</td>
<td>✓</td>
</tr>
<tr>
<td>Reserves to replace the sudden loss of the single largest on-line generator; supplied from online generation, storage or DR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulating Reserve</td>
<td><1 min</td>
<td>2 seconds, controllable within a resolution of 0.1 MW</td>
<td>Up to 30 min</td>
<td>✓</td>
</tr>
<tr>
<td>Maintain system frequency; supplied from on-line capacity that is not loaded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Spinning Reserve</td>
<td>10-30 min</td>
<td><30 min</td>
<td>2 hours</td>
<td>✓</td>
</tr>
<tr>
<td>Used to restore regulating reserves and contingency reserves; supplied by off-line fast start resources or DR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-AGC Ramping</td>
<td>N/A</td>
<td><2 min</td>
<td>Up to 2 hours</td>
<td>✓</td>
</tr>
<tr>
<td>Resources that can be available prior to quick start generation and can add to system ramping capability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black Start Capability</td>
<td>N/A</td>
<td><10 min</td>
<td>Duration of system restoration time</td>
<td>❌</td>
</tr>
<tr>
<td>The ability of a generating unit to start without system support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inertial Response</td>
<td>N/A</td>
<td>2-3 seconds</td>
<td>2-3 seconds</td>
<td>❌</td>
</tr>
<tr>
<td>Local (i.e. at a generator) response to a change in frequency, supplied by rotational mass of generators, or power electronics of inverter-based resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerated Energy Delivery***</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>✓</td>
</tr>
<tr>
<td>Shifting the demand for energy from high demand evening peak periods to lower demand midday periods, or higher demand morning periods to lower demand overnight periods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Services From Which Programs

<table>
<thead>
<tr>
<th>Grid Service Requirements</th>
<th>Current Demand Response Programs</th>
<th>RDLC</th>
<th>CIDLC</th>
<th>Fast DR (Hawaiian Electric)</th>
<th>Fast DR (Maui Electric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Regulating Reserve</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Contingency Reserve*</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Non-Spinning Reserve</td>
<td></td>
<td>✓</td>
<td>×</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Non-AGC Ramping</td>
<td></td>
<td>✓</td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Accelerated Energy Delivery</td>
<td></td>
<td>×</td>
<td>×</td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>

* Under-frequency response provided by RDLC and CIDLC can provide system protection but is not fast enough to be substituted for spinning reserves under the Companies’ contingency reserve requirement.
Alternative Communication Networks

<table>
<thead>
<tr>
<th>Function</th>
<th>Paging</th>
<th>AMI</th>
<th>Gateway</th>
<th>Cellular</th>
<th>Wi-Fi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Throughput Speed</td>
<td>High*</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Network Availability</td>
<td>Always on</td>
<td>Always on</td>
<td>Dependent on customer</td>
<td>Always on</td>
<td>Dependent on customer</td>
</tr>
<tr>
<td>Endpoint Online Status</td>
<td>None</td>
<td>Post-event analysis</td>
<td>15 minutes</td>
<td>15 minutes</td>
<td>Immediate</td>
</tr>
<tr>
<td>Load Control</td>
<td>Immediate</td>
<td>Scheduled</td>
<td>Immediate or scheduled</td>
<td>Immediate or scheduled</td>
<td>Immediate or scheduled</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>None</td>
<td>Next meter read</td>
<td>15 minutes</td>
<td>Immediate</td>
<td>Immediate</td>
</tr>
<tr>
<td>Commissioning</td>
<td>Simple</td>
<td>Complex</td>
<td>Complex</td>
<td>Plug and play</td>
<td>Low</td>
</tr>
<tr>
<td>Consumption Display</td>
<td>None</td>
<td>Local real-time</td>
<td>From meter read</td>
<td>From meter read</td>
<td>From meter read</td>
</tr>
<tr>
<td>Remote Device Telemetry</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Remote Device Configuration</td>
<td>Some</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Proposed Future Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Grid Service Requirement</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBDLC</td>
<td>Capacity</td>
<td>Water Heaters, central A/C</td>
</tr>
<tr>
<td></td>
<td>Non-AGC Ramping</td>
<td>Water Heaters, central A/C</td>
</tr>
<tr>
<td></td>
<td>Non Spinning Reserve</td>
<td>Water Heaters, central A/C</td>
</tr>
<tr>
<td>R&B Flexible</td>
<td>Regulating Reserve</td>
<td>GIWH, central A/C</td>
</tr>
<tr>
<td></td>
<td>Accelerated Energy Delivery</td>
<td>GIWH</td>
</tr>
<tr>
<td>CIDLC</td>
<td>Capacity</td>
<td>C&I Curtailable</td>
</tr>
<tr>
<td>C&I Flexible</td>
<td>Regulating Reserve</td>
<td>Central A/C, Ventilation, Refrigeration</td>
</tr>
<tr>
<td></td>
<td>Non-AGC Ramping</td>
<td>Central A/C, Ventilation, Refrigeration, Lighting</td>
</tr>
<tr>
<td>Water Pumping</td>
<td>Regulating Reserve</td>
<td>Pumps</td>
</tr>
<tr>
<td></td>
<td>Non-AGC Ramping</td>
<td>Pumps</td>
</tr>
<tr>
<td>Customer Firm Generation</td>
<td>Capacity</td>
<td>Generators</td>
</tr>
<tr>
<td>Dynamic and Critical Peak Pricing</td>
<td>Capacity</td>
<td>Unspecified Customer Load</td>
</tr>
<tr>
<td></td>
<td>Accelerated Energy Delivery</td>
<td>Unspecified Customer Load</td>
</tr>
</tbody>
</table>
Pilot Programs

• Grid Integrated Water Heating
 – Two technologies deployed
• EV Charging TOU Pilot
Power Supply Improvement Plan

Retire Old Steam

Build Marine Diesels
Some Things NOT Happening

- Full deployment of GIWH
- Water Pumping Controls: Not accepted by water agencies.
- Deployment of Air Conditioning thermal storage
- TOU pricing
Potential for GIWH

- ~150,000 electric water heaters; 70% in multi-family
- ~600 MW of potentially dispatchable load (40%)
- ~75 MW of potential peak load reduction (6%)
- Incremental cost < $100/kW if integrated at manufacturing.
It’s Easy To Spot a Water Heater
Water Pumping Uses
~5% of Hawaii kWh

$0.20/kWh when power is “cheap”
$0.50/kWh when power is “expensive”
AC Storage

Simple technology; great peak relief.
No programs to deploy

Energy solutions
for a changing world
Current Rate Design Options

- **No AMI;** all require special metering
- **Rider I:** Interruptible 4 custs; 3 MW
- **Rider M:** 2 Hours Curtailable >10 MW
- **Rider T:** 2-Period TOU Rate
 - +3 cents on-peak; -2 cents off peak
- **Schedule U:** 3-Period TOU Rate
 - 5 – 9 PM Priority Peak

- **EV Charging TOU Pilot**
Residential Rate Design

<table>
<thead>
<tr>
<th>Current HECO Residential Rate</th>
<th>Principles-based Residential Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Charge</td>
<td>Customer Charge</td>
</tr>
<tr>
<td>$9.00/month</td>
<td>$9.00/month</td>
</tr>
<tr>
<td>First 350 kWh</td>
<td>Off-Peak</td>
</tr>
<tr>
<td>$0.34</td>
<td>$0.10</td>
</tr>
<tr>
<td>Next 850 kWh</td>
<td>On-Peak</td>
</tr>
<tr>
<td>$0.35</td>
<td>$0.30</td>
</tr>
<tr>
<td>Over 1,200 kWh</td>
<td>Power</td>
</tr>
<tr>
<td>$0.37</td>
<td>$0.05</td>
</tr>
</tbody>
</table>

ONLY the “Power” rate credited for power fed to the grid.
Large Commercial Rate Design

Current:

Customer: $60/mo
Demand: $11.69/kW
Energy: $.216/kWh

Alternative

Customer: $60/mo
Demand:
 NCP: $2.00/kW
 4 – 8 PM: $9.00/kW
Energy:
 Off-Peak: $.12/kWh
 On-Peak: $.25/kWh
 Critical: $.75/kWh
Current Chaos

• Dockets Underway:
 – Decoupling
 – Renewable Interconnection / Net Metering
 – HECO Rate Case
• New Chairman
• Acquisition of HEI by NextEra
• Longstanding tension between energy future scenarios
Big Wind and Solar

NextEra Merger

Biofuels

Decentralized
Will Hawaii Ride The Wave of Change?

Or Wipe-Out?

Energy solutions for a changing world
About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

jlazar@raponline.org