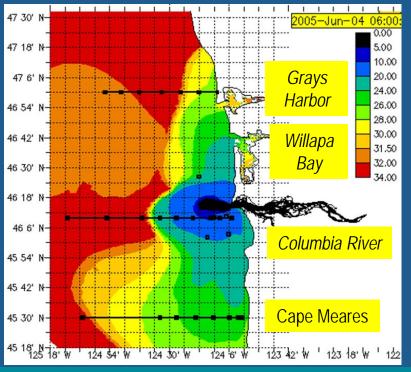
Eulachon in the Columbia River Estuary & Plume

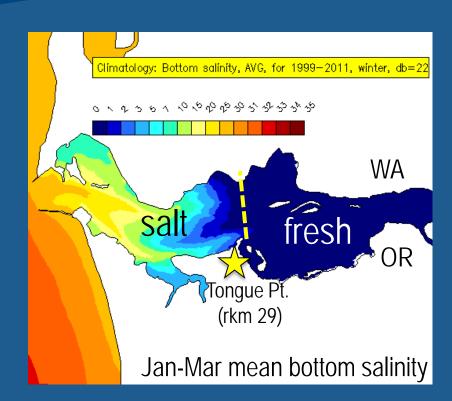
NOAA FISHERIES

ARTMENT OF CO

NOAA


NATIONAL OCA

Northwest Fisheries Science Center Highlights of what is known, what is unknown, what is needed for recovery planning


Presented by: Jeannette E. Zamon, jen.zamon@noaa.gov Collaborators: Susan Hinton, Paul Bentley, Robert Emmett (NWFSC) Olaf Langness (WDFW) 21 August 2015

Jen's quick & dirty habitat definitions Tidal freshwater - rkm 235-rkm 29 Estuary – rkm 29- rkm 0

larvae, spawning adults

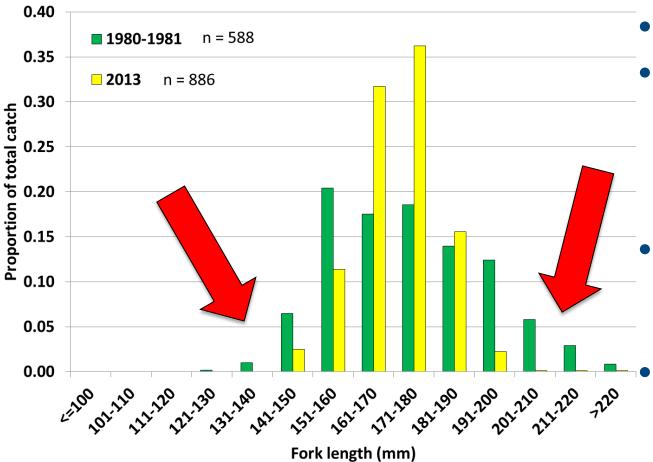
NOAA FISHERIES

Plume – marine area directly influenced by river dischargeIarvae, juveniles, adults

Climatology & plume model courtesy www.stccmop.org

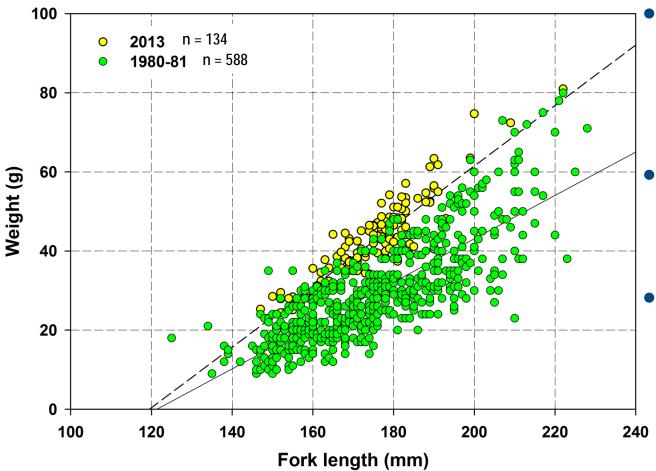
Columbia River Estuary & Tidal Freshwater

- Joint work NWFSC, WDFW; Jan-Mar 2013
- Proof of concept research trawl + hydroacoustics
- Cost-effective, direct, fishery-independent sampling of spawning run: distribution, sex ratio, size, fecundity
- Potential work on run timing, age structure, acoustic biomass estimates, live specimens
- Compare w/historical estuary data from CREDDP 1980-81



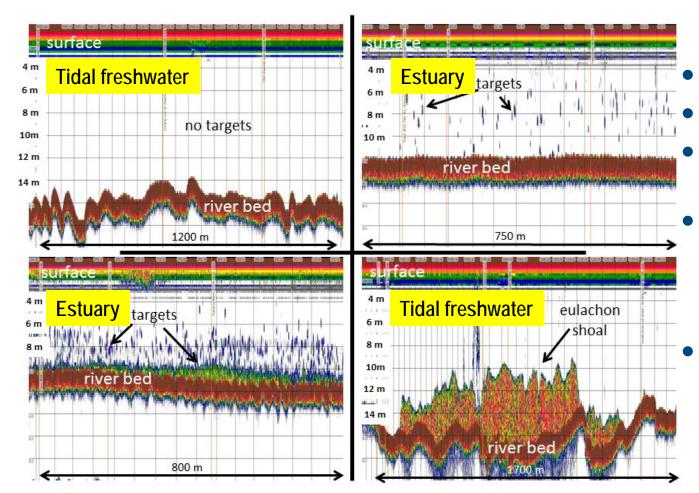
Numerical species composition of trawls

	ESTUARY (n = 38)			TIDAL FRESHWATER (n = 9)		
SPECIES	CATCH (n)	CATCH (%)	FO (%)	CATCH (n)	CATCH (%)	FO (%)
American shad	12,152	50.20	84.2	385	0.2	1.1
Longfin smelt	5,827	24.1	73.7	34	<0.1	22.2
Threespine stickleback	4,204	17.4	85.9	204,506	96.4	88.9
Eulachon	715	3.0	60.5	7,061	3.3	22.2
Dungeness crab	304	1.3	31.6	0	0	0
Starry flounder	256	1.1	65.8	72	<0.1	55.6
English sole	242	1.0	31.6	1	<0.1	11.1
Pacific staghorn sculpin	240	1.0	55.3	0	0	
Snake prickleback	64	0.3	26.3	0	0	
Sand sole	61	0.3	15.8	0	0	
Pacific tom cod	59	0.2	15.8	0	0	
Chinook salmon (juvenile)	36	0.1	26.3	12	0.1	11.1
Other, excluding bay shrimp	53	<0.1	-	1	<0.01	-



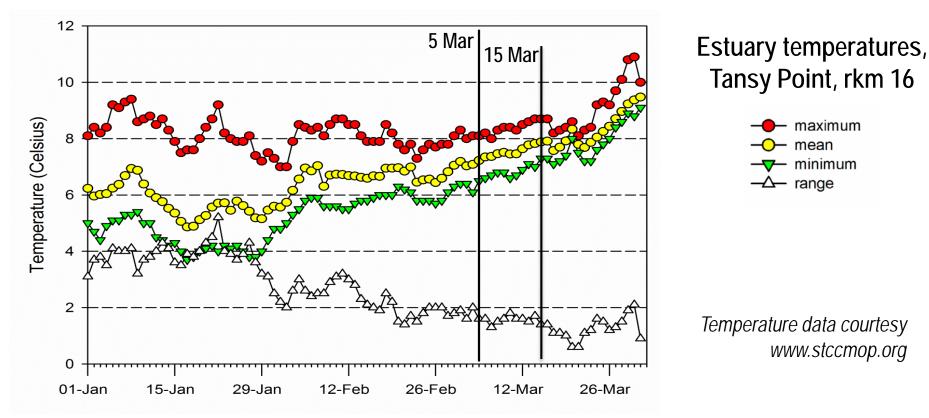
Size distribution, Columbia estuary

- 1:1 sex ratio
- Mean fork length, 2013 spawners:
 - males: 173.9 mm
 - females: 169.9 mm
 - Size distribution changed, 1980-81 vs. 2013 Is this a change in age distribution?


Length-weight distribution, Columbia estuary

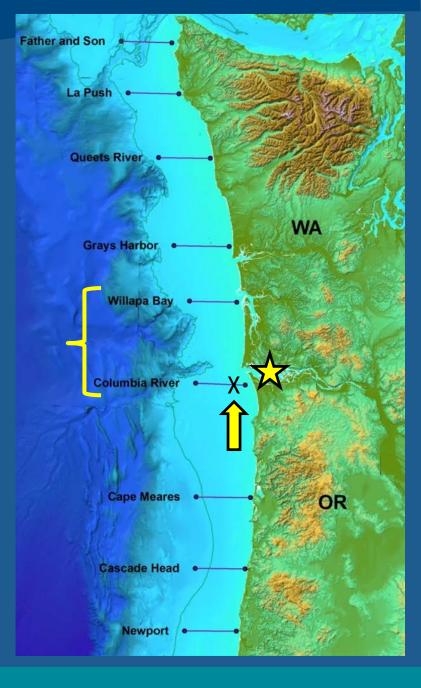
- Apparent change in length-weight distribution, 1980-81 vs. 2013
- Less precise weights in 1980s:
 - ±1.0g vs.±0.1g
- Inclusion of spawned out fish? Recent poor survival of smaller fish?

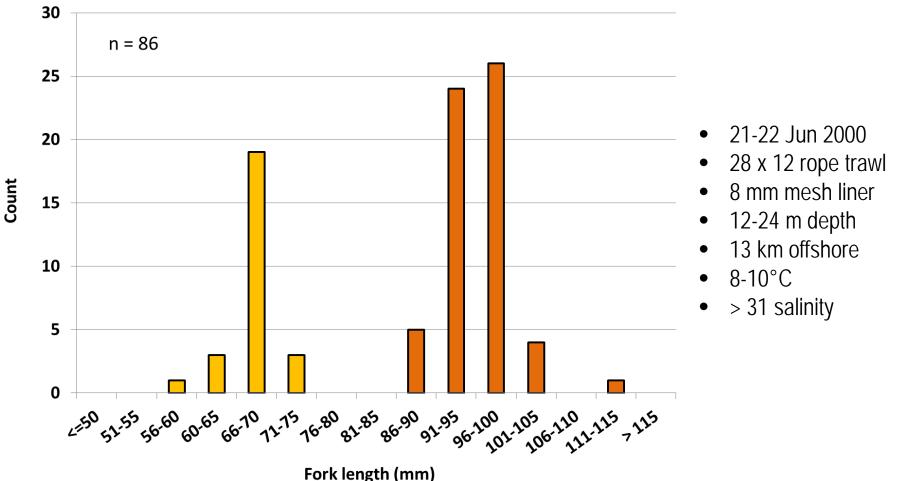
1st acoustic images of Columbia River eulachon shoals



- 5-7 Mar 2013
- Tidal freshwater
- Blanketed ~2 km section of river
- Single species, bottom-oriented, well-defined edges, densely packed
- Unique echo signatures

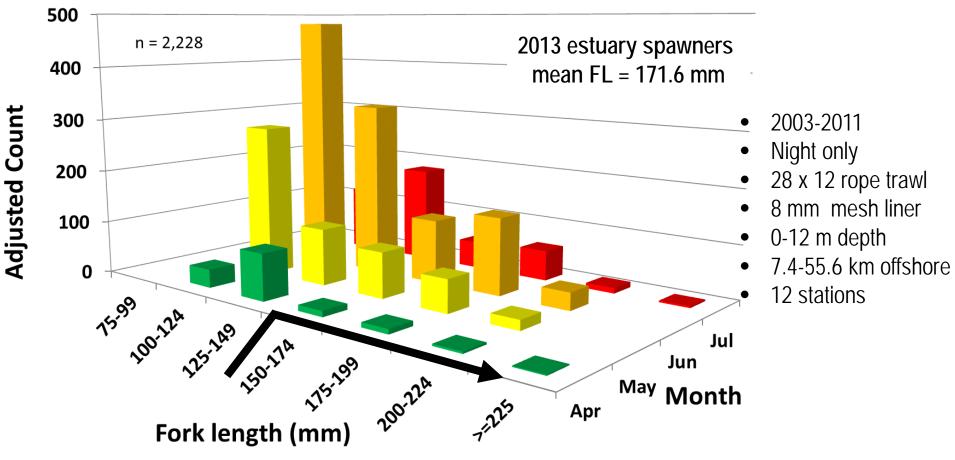
Hull-mounted 38 kHz Simrad split-beam system, 12° beam-width


Run timing & Columbia estuary conditions


- 5-7 Mar: eulachon shoal 1st seen in tidal freshwater near Wauna, OR (rkm 64-66)
- 15 Mar: eulachon enter Cowlitz River (rkm 109)
- Is 6°C a critical estuary minimum temperature trigger for upstream migration? Is it the transition from tide-dominated to flow-dominated temperature?

Columbia River Plume

- NOAA-led work
- Emmett et al. legacy
- At-sea surveys to understand mechanisms governing early marine distribution, growth, & survival of juvenile salmon



Size distribution, Columbia plume

- Emmett et al. 2004, occur w/herring, whitebait smelt, juvenile salmon
- Two size classes = two age classes? two spawning events? two growth conditions?

Seasonal size distribution, Columbia plume

• Emmett et al., unpublished data

AAFISHERIES

- 85% captured in < 100 m, overlap w/juvenile salmon & nearshore predators
- Growth into spawner size classes between Apr-Jun? Multiple age classes?

Filling data gaps for recovery planning
Bringing existing NWFSC resources into play
Coordinating work with state, tribal, academic resources

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries

Eulachon in Columbia estuary/tidal freshwater

KNOWN

- Spawners occupy estuary habitat weeks before peak spawning
- Size distribution of spawners has changed
- Daytime eulachon are bottomoriented
- Research trawl captures fish w/greater size range, lower mortality (<0.1%), better condition than commercial gear
- Acoustics can map, target, & enumerate spawners
- Spawning run attracts large numbers of predators (e.g. seabirds, pinnipeds, sturgeon)

- UNKNOWN and NEEDED
 - Size-at-age structure of spawners
 - o Sex ratio of spawners
 - o Variation in run magnitude, timing
 - o Direct estimate of spawner biomass
 - Mechanisms triggering upriver movement of spawners: temperature, flow, etc.
 - Larval density/size/condition/timing at ocean entry w/r/t flow, tides, other estuary conditions (present larval sampling in tidal freshwater, rkm 55-65)

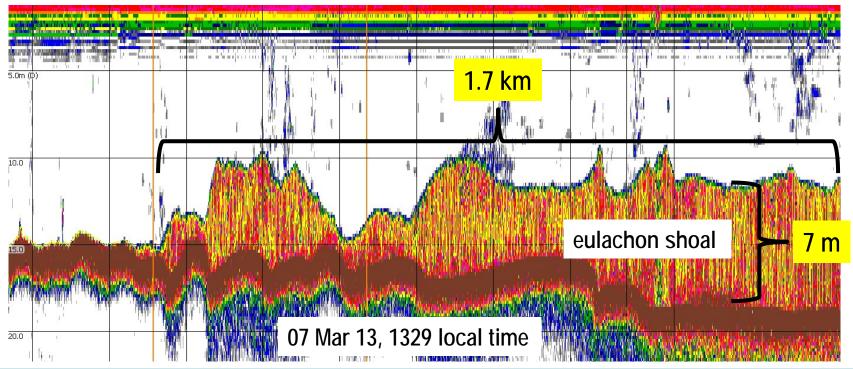
Eulachon in the Columbia plume

KNOWN

- Juveniles, sub-adults, adults definitely present Apr-Jul
- Length-frequencies suggest
 - Critical marine growth Apr-Jun
 - Recruitment to spawner size classes
- Not caught in daytime surface trawls or estuary seines

UNKNOWN and NEEDED

- Variation in size-at-age composition
- Larval, juvenile marine distribution hydrography
- Marine growth/survival hydrography, food, predators
- Eulachon function as alternative prey for salmon predators


"Low-hanging fruit" - critical uncertainties we could resolve with high probability of success

- Tidal freshwater & estuary
 - Adult spawning stock biomass, run timing (direct, indirect)
 - Age, size, genetic structure of estuary spawners & larvae
 - Spawning migration timing vs. flow, temperature, other estuary/ocean conditions
 - Ocean entry timing, size, condition for larvae w/r/t temp, flow
- Plume
 - Synthesize/analyze existing ocean eulachon data w/physical & biological ocean ecology data
 - Marine distribution, age, size structure of larvae
 - Juvenile/adult age, size structure

Acoustic spawning stock biomass estimate: a sound investment in recovery planning

- Direct estimate of run timing, biomass in estuary, tidal freshwater
- Ground-truth size, age distribution w/net sampling
- Proven technique in fisheries management, used in Alaska, Canada***
- Strong conceptual framework from which to launch other studies

***Stables et al. 2005, Sigler et al. 2004

Acknowledgements, questions

<u>NOAA</u>

- Skippers: Brian Kelly & Charlie Neace
- Field biologists: George McCabe, Tiffanie Cross
- Pt. Adams Shop: Joel Holcomb, Brian Fite, Daye' Hix, Terry Roe
- Fisheries Managers: Robert Anderson, Jeff Fisher, Scott Rumsey
- Eulachon & Forage Fish Gurus: Rick Gustafson, Kurt Fresh

FUNDING

- Estuary/tidal freshwater: NOAA Regional Office
- Plume: BPA

<u>WDFW</u>

- Contract biologist: Shaffryn Schade
- Staff biologists: Brad Cady, Phillip Dionne, Brad James, Laura Lloyd, Chris Wagemann

Dedicated to the memory of Dr. Robert Emmett

Jen Zamon contact info:

jen.zamon@noaa.gov

503-739-1055 (cell)

