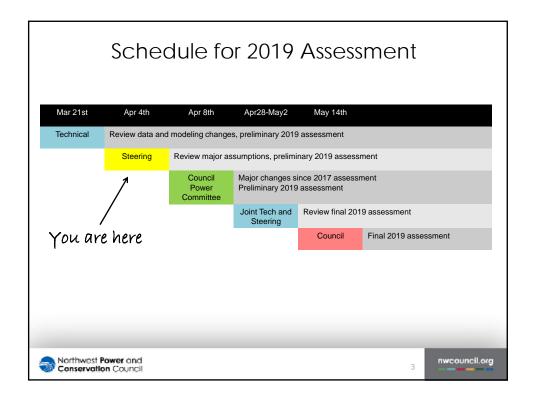
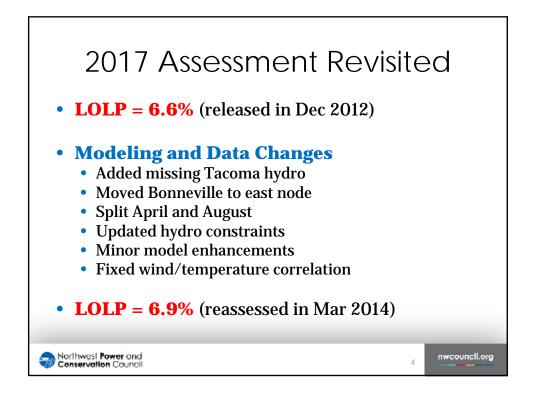
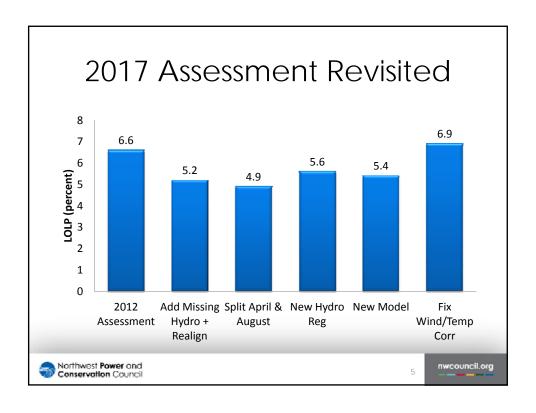
Resource Adequacy Advisory Committee

Preliminary Assessment for 2019

Steering Committee Meeting April 4, 2014




nwcouncil.org


Outline

- 1. Schedule
- 2. 2017 Assessment Revisited
- 3. Data Updates 2017 to 2019
- 4. Modeling Changes
- 5. Preliminary Results for 2019
- 6. An Early Look at 2021

Data Updates 2017 to 2019

- Temperature 84 years <u>available</u>
 Oct 1928 through Sep 2012
- Wind 77 years (temperature correlated)
 Oct 1928 through Sept 2005
- Load 77 years <u>used</u> to match wind data
- Load growth from 2017 to 2019 = 260
 MWa (about a 0.6% annual rate, includes 700
 MWa of energy efficiency savings)

Data Updates 2017 to 2019

- Major resource additions:
 - Carty Generating Station (440 MW)
 - Port Westward 2 (220 MW)
 - Minor updates reflect retirements and adjustments to data
 - Net increase is 667 MW
- Wind additions (sited and licensed, for NW load):
 - From 4265.6 MW to 4532.4 MW
 - Net increase 266.8 MW
- Contracts (imports, exports, intra-regional transfers) updated from 2013 White Book

nwcouncil.org

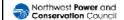
Data Updates 2017 to 2019

- Standby Resources 2017:
 - Annual energy = 83,000 MW-hr
 - Oct-Mar peak = 660 MW
 - Apr-Sep peak = 720 MW
- Standby Resources 2019:
 - Annual energy = 41,650 MW-hr
 - Oct-Mar peak = 673 MW
 - Apr-Sep peak = 733 MW

Data Updates 2017 to 2019

- Hydro Regulation 2017:
 - Initial 2017 assessment (reported in 2012) used the initial 2017 hydro regulation
 - Revised 2017 assessment (redone this year) used the final 2017 hydro regulation
- Hydro Regulation 2019:
 - Used the final 2019 hydro regulation
- Sustained peaking data for 2019 based off of the final 2019 hydro regulation

nwcouncil.org

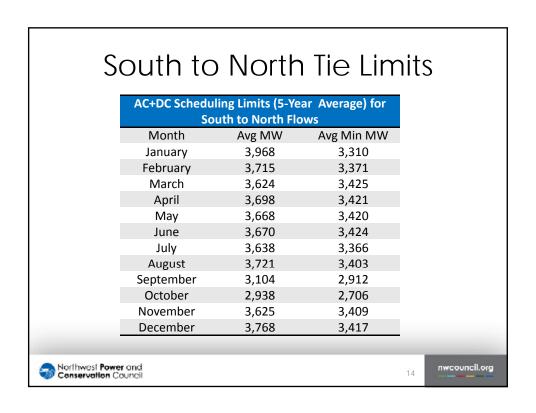

Modeling Changes for 2019

- 12 period to 14 period
 - April and August periods are now split-month
 - Initial 2017 assessment modeled April and August as single periods
- Nodal allocation of resources
 - Hydro resource node allocation revised to line up with nodal allocation used in Aurora (3 nodes)
 - 2019 assessment was run in 2-node configuration
- Multiple wind year sets
 - 2017 assessment used a single set of temperature-correlated wind capacity factors per year
 - 2019 assessment incorporates a random draw from 20 wind sets per year

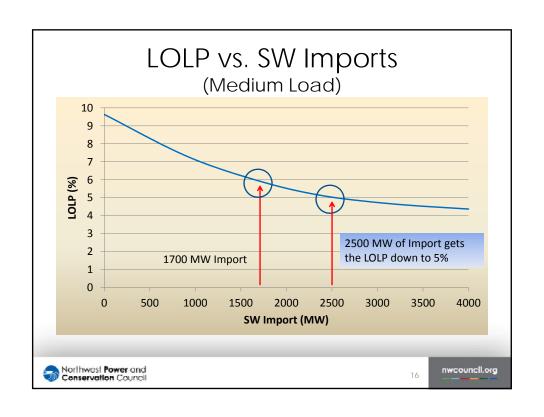
Preliminary 2019 Case

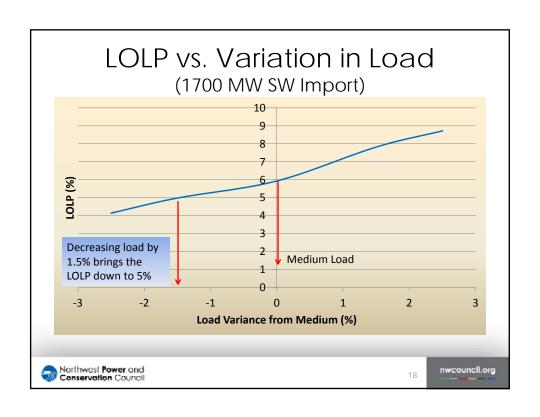
- Test case assumptions
 - Council's medium load forecast
 - SW winter peak import max is 1700 MW (same as for the 2017 assessment)
 - Off-peak SW import max is 3000 MW year round
- LOLP = 5.93%

11


Preliminary Results for 2019

Load	-2.5%	-1.5%	0%	+1.5%	+2.5%
Import (MW)					
0	6.95%	8.04%	9.63%	12.27%	14.14%
900	5.37%	5.97%	7.32%	9.17%	10.88%
1700	4.14%	4.98%	5.93%	7.82%	8.72%
2400	3.69%	4.32%	5.11%	6.67%	7.48%
3200	3.38%	3.98%	4.64%	5.91%	7.03%
4000	3.10%	3.80%	4.37%	5.42%	6.53%


- Low import and high load case LOLP ~ 14.1%
- High import and low load case LOLP ~ 3.1%


Load	-2.5%	-1.5%	0%	+1.5%	+2.5%
Market (MW)					
0	6.95%	8.04%	9.63%	12.27%	14.14%
900	5.37%	5.97%	7.32%	9.17%	10.88%
1700	4.14%	4.98%	5.93%	7.82%	8.72%
2400	3.69%	4.32%	5.11%	6.67%	7.48%
3200	3.38%	3.98%	4.64%	5.91%	7.03%
4000	3.10%	3.80%	4.37%	5.42%	6.53%
¹ Using font size to illus	strate the likeli	hood for each L	OLP value. This a	ssumes that 17	700 to 2400 M

Load Variation	-2.5%	-1.5%	0%	+1.5%	+2.5%
Imports (MW)					
0			9.63%	12.27%	
900		5.97%	7.32%	9.17%	
1700		4.98%	5.93%	7.82%	
2400		4.32%	5.11%	6.67%	
3200		3.98%	4.64%	5.91%	
4000		3.80%	4.37%	5.42%	
	Let's just l	ook at this colu	mn /		

Load Variation	-2.5%	-1.5%	0%	+1.5%	+2.5%
Imports (MW)					
0	6.95%	8.04%	9.63%	12.27%	14.14%
900		5.97%		9.17%	
1700	4.14%	4.98%	5.93%	7.82%	8.72%
2400	3.69%	4.32%	5.11%	6.67%	7.48%
3200		3.98%	4.64%	5.91%	7.03%
4000		3.80%	4.37%	5.42%	6.53%
Let's just look at t	his row				

Actions to get Test Case LOLP to 5%

- 500 MW of additional new resource capacity
- 450 MW of additional standby resource capacity
 or
- 325 MWa load reduction
 or
- Various combinations of new resource and EE

19

Planned New Resources

- 2017 report noted that utility IRPs included about 3,000 MW of planned generating resources
- More than enough to bring the power supply within the adequacy standard (5%)
- 2019 IRPs should also show more than enough planned generating resources to keep the supply adequate

An Early Look at 2021

- Loss of two coal plants
 - Boardman 601 MW
 - Centralia 1 730 MW
- Load growth between 2019 and 2021
 - About 260 MWa
 - Includes 700 MWa of energy efficiency
- 2019 assessment will include a section for the estimated LOLP for 2021

