Conservation Resource Advisory Committee

August 21, 2013

Agenda

- Welcome
- Seventh Plan Timeline
- Identify Elements for CRAC Advice
- Lessons Learned from Sixth Plan
- Discussion of EE Policy Issues

Along the way we may identify technical analyses and sensitivity studies to develop as part of Seventh Plan.

Other Council Advisory Committees

- Demand Forecasting
- Demand Response
- Generating Resources
- Natural Gas
- Systems Analysis
- Resource Adequacy
- Resource Strategies
- Conservation

Key Elements for CRAC Advice Over Development of 7P

- Performance cost & availability
 - Inputs for costs & savings analysis
 - Shape of savings for capacity analysis
- Baselines & remaining potential
 - Technical & achievable potential
- Development assumptions
 - Ramp rates, Max/Year, LO/NLO Supply, etc.
- EE development decision rules in RPM modeling
- Action Plan recommendations

Conservation Council

Lessons Learned Sixth Plan

- Factors affecting conservation resource development
 - Cost & amount of lost-opportunity & non-lost opportunity EE
 - Wholesale market prices
 - Carbon cost/risk
 - Load growth
 - Acquisition ramp rate assumptions
- Sensitivity analysis
- Uncertainty analysis
- Market price adder for conservation cost-effectiveness
 - How it operates as a decision rule

The Resource Planner's Problem • Don't have too many resources • Don't have too few resources • Have the amount of resources that are "just right" Northwest Power and Conservation Council Servation

Sixth Plan Cost-Effectiveness Findings: Premium Over Market Price

- Future power prices are not known
- Cannot know conservation avoided cost a priori
- Cannot know "economic" potential a priori
- So RPM tests avoided cost decision rules
- Test levels: "Apparent" market price plus premium
- "Apparent" market price proxy is last 5-year price
- Premiums tested in increments (plus 10, plus 20 ...)
- RPM finds the decision rule that best reduces system cost & risk: Buy up to apparent market price plus X
- Approach meant to mimic utility system decisions

Planning for Uncertainty in an IRP

- <u>Plans</u> actions and policies over which the decision maker <u>has control</u> that will affect the outcome of decisions
- <u>Futures</u> circumstances over which the decision maker <u>has no control</u> that will affect the outcome of decisions. RPM uses 750 futures to stress test plans.
- <u>Scenarios</u> Combinations of <u>Plans</u> and <u>Futures</u> used to "stress test" how well what we control performs in a world we don't control

Sixth Plan EE Premium Findings

- Lost-Opportunity Conservation:
 - Market Price plus \$50/MWh
- Non-Lost-Opportunity Conservation:
 - Market Price plus \$80/MWh
 - Modified to Market Price plus \$30/MWh

How Cost-Effectiveness Premium Operates

- Works in conjunction with shape of supply curve
- Builds more EE when market prices are low
- Limits overbuild EE when prices are high

6P EE Development Decision Rules

- Modeling conservation development decision making used in RPM
- Important area for CRAC advice
 - 1. Apparent Market Price
 - 2. Ramp Rates Acceleration
 - 3. Maximum Rate Limits
 - 4. Buy "Up To" Behavior
 - Sampling Non-LO
 - Sticky Downward LO
- Northwest 5. Incorporate Regional Act Credit Conservation Council

6P Ramp Rates & Maximum Rate Limits

- Retrofit (NLO):
 - Based on measure by measure acceleration rates
 - 160 MWa/Year Limit
 - Sample from supply curve to reflect cannot buy only cheapest first
- Lost Opportunity (LO):
 - Fan of Curves for every two years
 - Based on measure by measure acceleration rates
 - Sticky Downward
- Northwest To reflect codes & standards not falling back Power and Conservation Council

6P Ramp Rates

Use a Bottom-Up Approach to Estimate Penetration Rates

- Estimate Annual Penetration Rates by Measure Bundle
- Distinguish Features that Impact Penetration Rate
 - Complexity of Measures
 - Delivery Mechanisms & Decision Makers
 - Current Market Saturation
 - Equipment & Infrastructure Availability
 - Subject to Code or Standard
 - Size & Cost
- (Annual Penetration Rate) x (Annual Units) x (Unit Savings)
- Then Sum of All Measure-Level Supply Curves by Year & Levelized Cost bin

slide 44

6P Penetration Rate "Families" Lost-Opportunity Emerging Technology LO Slow LO Medium LO Fast Retrofit New Measure In 20 Years In 10 Years In 5 Years In 5 Years

6P Sampling the Discretionary Supply Curve

• Problem:

- Can't buy only cheap conservation first
- Programs mix high and low-cost measures

Solution:

- Sample from the supply curve
- Sample based on amount in each cost bin
- And favor bins with cost less than \$40/MWh

slide 48

6P Acquisition Rate Findings

- Maximum Achievable Pace is Very Important
- Faster annual pace reduces cost & risk
- Annual pace limits have dramatic effect on cost risk
- Lost-Opportunity commands high adder
 - \$50/MWh over market price reduces risk along the frontier
- Retrofit commands lower adder
 - Abundant conservation at low cost (\$30/MWh average)
 - \$30/MWh over market reduces risk along the frontier

slide 54

Incorporating Regional Act Credit

- Regional Act:
 - EE is cost-effective at 110% of generation cost
- Credit calculated as 10% of power system value
 - Value of energy based on single 20-year market price
 - Value of deferred transmission and distribution system expansion based on kW impacts of EE
- Credit is subtracted from levelized cost of energy in the conservation supply curves

6P Deterministic Model Results												
	Includes Carbon Cost?	LO Market Adder Value (2006\$/ MWh)		NLO Market Adder Value (2006\$/ MWh)		Lost Opportunit y (MWa)	Non-Lost Opportunity (MWa)	Total (MWa)				
Base Case	No	\$	-	\$	-	1,835	2,253	4,008				
Carbon Cost	Yes	\$	-	\$	-	2,180	2,479	4,660				
"Market Adders"	No	\$	50	\$	50	2,854	2,584	5,438				
6th Plan Market Adders	No	\$	50	\$	80	2,854	2,727	5,582				
Carbon+Equal Market Adders	Yes	\$	50	\$	50	3,037	2,719	5,755				
Carbon+6 th Plan "Market Adders"	Yes	\$	50	\$	80	3,037	2,812	5,849				
Northwest Power and Conscrvation Council												

6P Stochastic Model Results													
	Includes Carbon Cost?	LO Market Adder Value (2006\$/ MWh)		NLO Market Adder Value (2006\$/ MWh)		Lost Opportunity (MWa)	Non-Lost Opportunity (MWa)	Total (MWa)					
Base Case	No	\$	-	\$	-	2,072	2,405	4,477					
Carbon Cost	Yes	\$	-	\$	-	2,395	2,552	4,947					
"Market Adders"	No	\$	50	\$	50	2,963	2,672	5,635					
6th Plan Market Adders	No	\$	50	\$	80	2,963	2,787	5,750					
Carbon+Equal Market Adders	Yes	\$	50	\$	50	3,092	2,787	5,859					
Carbon+6 th Plan "Market Adders"	Yes	\$	50	\$	80	3,092	2,867	5,958					
Northwest Power and Conservation Council													

Cost Effectiveness Premium **Deterministic Sources of Value**

- Capacity deferral and displacement
 - Based on shape of energy saved hour, day, month
 - Impact anticipated kW peaks & peak resource needs
 - Frees up flexible resources
- Reducing RPS obligations
- Potentially
 - Cost reduction even for surplus utilities
 - Opportunities to develop and resell
- Purchases at below-average prices

Northwest The "constant-dollar averaging effect" Conservation Council

Cost Effectiveness Premium Risk Mitigation Sources of Value

- "Strategic" risk mitigation
 - fuel price exposure
 - wholesale power prices
 - carbon risk
- Superiority in both low-market and highmarket futures relative to fuel-based resources
- "Inverse elasticity" effect

