

Regional Growth In Solar Energy Consumption

- Solar consumption both Thermal and PV has been on steady increase since early 1990s.
- From 2000-2010 Solar PV grow at annual rate of 13% and solar thermal grow at 9%
- Oregon has the largest level of solar installation and consumption followed by Washington.

Using EIA 861 of there we Net metered Photovolta	ere about	46 MW of		of 2011
Net Metered Installs as of 2011	Residential	Commercial	Industrial	Total
∃ldaho	0.6	0.9	0.03	1.6
⊕ Montana	1.4	0.9	-	2.3
∃Oregon	14	16	1	31
∃Washington	7	3	0	11
Regional Total	23	21	1	46
YEAR	2011	Ţ.		
Net Metered Installs as of 2011	Residenti	al Commerci	al Industrial	Total
∄ ldaho	33			374
⊕ Montana	60			798
⊕ Oregon	4,08			4,682
Washington	2,01	4 27	-	2,286
Regional Total	7,02	5 1,07	6 39	8,140

Solar Has Popular Support

- 92 percent of voters believe it's important for the U.S. to develop and use more solar energy
- 85 percent of voters view solar energy favorably (60 percent very favorable)
- 78 percent of voters say government should support growth of solar energy with incentives

With high popularity, why rooftop solar installs are not more prevalent in NW?

- Cost speak loudest, Regional Low electricity rates, increases payback period
- Incentives are not high and consistent.
- Space requirements
- Trees
- Variability in output (location, location, location)

Average of \$/W DC		Year				
Host Customer Sector	-	2008	2009	2010	2011	2012
Residential		8.8	8.4	6.6	6.6	5.7
Commercial		8.8	7.8	7.1	6.0	5.4
Government		7.7	8.8	6.6	6.5	5.9
ndustrial				5.8		
Non-Profit		8.7	8.3	8.5	5.7	5.6

Forecasting Demand for Solar PV

- Council's long-term modeling considers the demand for solar PV as a Cogeneration demand.
- Cogeneration demand is estimated for each sector, and matched to historic levels.
- Model uses electricity rate and solar cost (capital and variable cost) on the simulation of decision to install.
- Forecast of rooftop solar generation and its contribution to system peak is used to lower system average and system peak.

21

How Contribution to System Peak is calculated

- We take hourly system load (NW system load) for each year, 1995-2010.
- Then take estimated average hourly PV generation (16 sites across the region)
- We then identify PV generation at the time of system peak for a given year, month and state.
- Then we establish ratio of generation at the time of system peak to the average annual generation for each year.
- These monthly and annual ratios are then averaged.
- The resulting values show contribution (reduction) in system peak due to roof-top PV systems.

Next steps

- Update future trajectory of PV cost.
 - Keep rooftop PV trajectory consistent with utility PV cost.
- Test different scenarios
 - Incentives
 - Carbon tax

27

Questions

