Tentative Agenda
Natural Gas Advisory Committee
Northwest Power and Conservation Council
851 S.W. Sixth Avenue
Suite 1100
Portland Oregon 97204-1348

June 6th, 2014
9:00 AM to 12:30 PM
Instructions for GoToMeeting provided below

1. Welcome and introductions 9:00 to 9:15
2. Future of industrial use of natural gas in the NW (Ed Finklea) 9:15 to 9:45
3. Range of natural gas production and costs (Fred Heutte) 9:45 to 10:15
4. Impact of regulatory costs (Ken Zimmerman) 10:15 to 10:45
5. Break
6. Strawman proposal for 7th Plan 11:00 to 12:00
 a. Preliminary result of fuel price poll
 b. Comparison to other forecasts
7. Monthly Burner-tip gas prices 12:00 to 12:20
8. Next steps 12:20 to 12:30
Industrial Demand For Natural Gas
Is There Growth on the Horizon?

Ed Finklea
Executive Director
Northwest Industrial Gas Users
Recent PNW Gas Demand

PNW Gas Deliveries (source: US EIA, StatCan)

- Residential
- Commercial
- Industrial
- Generation

Million Dth

* 2014 Outlook Year 1 Forecast
US Industrial Projects In the Works Could Raise Current Natural Gas Demand of 19 Bcf per day by 4.9 Bcf a day by 2018

- Bentek identifies 298 industrial projects that have been announced.
- Projects are mostly in Southeast, Texas Gulf Coast, and Midwest.
- Methanol, ammonia fertilizer, ethylene, metals, chemicals, can all take advantage of lower natural gas prices relative to global markets.
- 3 Bcf a day is a mid range of forecasts of new industrial demand for process gas sector by 2018.
Gas Induced Industrial Development Is Leading to Creation of Family-Wage Jobs in US

- American Chemistry Council reports that nearly 100 chemical industry investment projects have been announced as of March, 2013 valued at $71.7 billion.

- By 2020, chemical industry investments could lead to 46,000 new direct jobs, 264,000 supplier industry jobs and 226,000 “payroll induced” jobs in impacted communities.

- PNW could take advantage of the industrial renaissance.
Announced Methanol Plants Indicate Magnitude of Potential Industrial Renaissance

- Four Individual Facilities Have Been Announced Each With Potential Gas Use of .13 MMDth/day.
- If All Four Facilities Were Built, total capacity need would be .72 MMDth/day. Total NW Pipeline Existing Capacity is 3.1 MMDth/day.
LNG Export Can Also Be Viewed As Incremental Demand

• Jordan Cove Has Export Permit From US Department of Energy to Export 1 Bcf per day of LNG to Non-free Trade Agreement Nations.

• Oregon LNG Project Now Must Await Studies Ordered Last Week by US DOE. It’s pending application is for another 1 Bcf per day of exports.

• Some estimate US exports of LNG could reach 10 to 15 Bcf per day by 2020.
Carbon Tax Would Hit Energy Intensive Businesses

• $30.00 per ton carbon tax is $1.59 per MMBtu price increase on commodity that sells for approximately $4.50 per MMBtu today.
• Washington Business Consumers of Natural Gas Would Experience $211.1 million Price Increase and Electric Generators $59.2 million.
• Oregon Business Consumers of Natural Gas Would Experience $137.2 million Price Increase and Electric Generators $138.3 million.
• Industrial Demand Would Be Impacted, Especially in Energy Price Sensitive Industries Such As Food Processing, Pulp and Paper, and Metals.
Fred Heutte presentation

Tentative Agenda
Natural Gas Advisory Committee
Northwest Power and Conservation Council
851 S.W. Sixth Avenue
Suite 1100
Portland Oregon 97204-1348

June 6th, 2014
9:00 AM to 12:30 PM
Instructions for GoToMeeting provided below

1. Welcome and introductions 9:00 to 9:15
2. Future of industrial use of natural gas in the NW (Ed Finklea) 9:15 to 9:45
3. Range of natural gas production and costs (Fred Heutte) 9:45 to 10:15
4. Impact of regulatory costs (Ken Zimmerman) 10:15 to 10:45
5. Break
6. Strawman proposal for 7th Plan 11:00 to 12:00
 a. Preliminary result of fuel price poll
 b. Comparison to other forecasts
7. Monthly Burner-tip gas prices 12:00 to 12:20
8. Next steps 12:20 to 12:30
State of Play

Natural Gas Past, Present and Future

Fred Heutte
NW Energy Coalition

Northwest Power and Conservation Council
Natural Gas Advisory Committee
June 6, 2014
Two ways to see natural gas --

Steady Sailing . . .

Figure 5: U.S. Dry Natural Gas Production

Source: U.S. EIA
... or Stormy Seas ...
The narrative has inverted . . .

- Old narrative: flat supply, variable pricing (with shocks)
- New narrative: growing supply, flat pricing

. . . or has it, really?
Conventional Wisdom

- The United States is on the verge of Energy Independence thanks to the Shale “REVOLUTION”.

- Shale Gas production will continue to grow for the foreseeable future (2040 at least) and prices will remain below $4.50/mcf for the next 10 years and below $6.00/mcf for the next 20 years.

- Shale Gas can replace very substantial amounts of oil for transport and coal for electricity generation.

- The way is clear for U.S. LNG exports to monetize the shale bounty.

David Hughes
The new narrative is certainly consistent . . .
And the “price is right” . . .

Natural gas prices rise with an expected increase in production costs

Figure MT-40. Annual average Henry Hub spot natural gas prices in the Reference case, 1990-2040 (2012 dollars per million Btu)

AEO 2014

. . . until you look at the data from the field . . .
Even smart people can get this wrong . . .

“We have a supply of natural gas that can last America nearly 100 years.”

President Obama, State of the Union, January 24, 2012
Figure 2: McKelvey box of resource classifications for unconventional gas

Ultimately recoverable resources

<table>
<thead>
<tr>
<th></th>
<th>Discovered</th>
<th>Undiscovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economically recoverable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technically recoverable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Imperial College Centre for Energy Policy and Technology
Resources = “Original Gas In Place”
Reserves = “Commercially Viable Gas”

The United States has 22 Years of Natural Gas, not 100 Years

<table>
<thead>
<tr>
<th>Potential Gas Committee Category</th>
<th>Tcf Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable resources (current fields)</td>
<td>537</td>
</tr>
<tr>
<td>Probable resources (coal-bed methane)</td>
<td>13</td>
</tr>
<tr>
<td>Total Probable</td>
<td>550</td>
</tr>
<tr>
<td>Optimistic reserve fraction (50%)</td>
<td>225</td>
</tr>
<tr>
<td>Years of supply when drilled & developed</td>
<td>10</td>
</tr>
<tr>
<td>Proved reserves</td>
<td>273</td>
</tr>
<tr>
<td>Years of supply when drilled & developed</td>
<td>12</td>
</tr>
<tr>
<td>Maximum years of supply when drilled & developed</td>
<td>22</td>
</tr>
</tbody>
</table>

The myth that the U.S. has 100 years of natural gas comes from confusing resources with reserves.
Factors of gas price variability

- **Short term variability/supply-demand balance:** weather, inventory/storage, peak congestion, relative cost for fuel switching (gas v. coal in swing plants) ...

- **Upside drivers**

 demand growth -- end use (buildings, equipment), industrial (process heat/feedstock), power plants, vehicles, import/export

- **Downside drivers**

 competition (renewables, efficiency, coal), supply chain optimization, E&P innovation

- **Market price limits**

 upside: supply fuel substitution, demand destruction
 downside: balance sheet (shut in production, and/or go broke)
Drivers of gas price trends

- Production cost
 land leasing and royalties, equipment, labor, financing, marketing, taxes, profit ...

- Policy (not a topic today)
 market structure and competition, supply chain environmental regulation, carbon pricing

“It's complicated . . .”
Is Shale Gas really different? Yes...

- Source rocks, not pools/traps
- 3D seismic imaging – no more (very few) “dry holes”
- “Fracking” == directional horizontal drilling multiple stage slickwater hydrofracturing with advanced proppants and well logging [very innovative technology!]
- Fracking is very efficient but that has a flip side . . .
 - high initial production
 - very fast decline rates
 => shorter well/field/play/region commercially viable production period
 => no effective restimulation (refracs < 5% total EUR)
 => high replacement rates/costs required (“shale treadmill”)
Is Shale Gas really different? Not so much . . .

- “Manufacturing model” is misleading

 well/field/play production declines and costs increase over time just like conventional production

- This is a pivotal point – shale plays cannot produce uniformly across the play

- And the number of major basins is limited so new plays cannot indefinitely replace old declining ones

- In fact we are probably getting close to that point
Shale play: core, periphery, tiers

Fayetteville Shale

UT Austin Bureau of Economic Geology
Tiers 1-5 most likely to be commercially viable

BASE-CASE PRODUCTION FORECAST

Production, MMcfd

Year completed

Completions/year, no.

Source: Reference 5

Barnett Shale

UT Austin Bureau of Economic Geology
Higher Tiers – higher cost, but not much more gas
Higher Tiers – higher cost, but not much more gas

Fayetteville Shale
Shale wells decline fast . . .
Early estimates reported best wells in Tiers 1-2-3 -- but experience reduced EURs significantly

Berman's early 1.15 EUR estimate compared to operator reported 3.0+ -- recent analysis by USGS and BEG shows ~ 1.5 Bcf EUR. New modeling at BEG confirms Berman's two-stage hypothesis and creates a replicable physical model of shale production (see Patzek et al, www.pnas.org/cgi/doi/10.1073/pnas.1313380110)
The cost *must* go up . . .

Well Economics: Average Well Breakeven

![Graph showing average well breakeven costs for Barnett Shale](image)

- Breakeven at 10% IRR
- Breakeven at 20% IRR

- Worst tiers not viable at possible prices.
- Only best tiers viable at low prices.

Barnett Shale

Svetlana Ikonnokova
UT Austin Bureau of Economic Geology
Many Shale Plays

Figure 2. North American Shale Plays

Prepared by Spectra Energy based on information provided by the U.S. Energy Information Administration (EIA).
... but only 6 really matter...
and there is no #7

Barnett, Eagle Ford, Fayetteville, Haynesville, Marcellus + NE BC
State of Play

EIA Shale Production by Play (bcfd)

- Bakken (ND)
- Woodford (OK)
- Barnett (TX)
- Fayetteville (AR)
- Eagle Ford (TX)
- Haynesville (LA & TX)
- Marcellus (PA & WV)

NWEC
State of Play

Shale Gas Production (bcfd)

- All Other Plays
- Marcellus

NWEC
Prognosis for Future Production based on Latest Rig Count

<table>
<thead>
<tr>
<th>Field</th>
<th>Rank</th>
<th>Number of Wells needed annually to offset decline</th>
<th>Wells Added for most recent Year</th>
<th>October 2012 Rig Count</th>
<th>Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haynesville</td>
<td>1</td>
<td>774</td>
<td>810</td>
<td>20</td>
<td>Decline</td>
</tr>
<tr>
<td>Barnett</td>
<td>2</td>
<td>1507</td>
<td>1112</td>
<td>42</td>
<td>Decline</td>
</tr>
<tr>
<td>Marcellus</td>
<td>3</td>
<td>561</td>
<td>1244</td>
<td>110</td>
<td>Growth</td>
</tr>
<tr>
<td>Fayetteville</td>
<td>4</td>
<td>707</td>
<td>679</td>
<td>15</td>
<td>Decline</td>
</tr>
<tr>
<td>Eagle Ford</td>
<td>5</td>
<td>945</td>
<td>1983</td>
<td>274</td>
<td>Growth</td>
</tr>
<tr>
<td>Woodford</td>
<td>6</td>
<td>222</td>
<td>170</td>
<td>61</td>
<td>Decline</td>
</tr>
<tr>
<td>Granite Wash</td>
<td>7</td>
<td>239</td>
<td>205</td>
<td>N/A</td>
<td>Decline</td>
</tr>
<tr>
<td>Bakken</td>
<td>8</td>
<td>699</td>
<td>1500</td>
<td>186</td>
<td>Growth</td>
</tr>
<tr>
<td>Niobrara</td>
<td>9</td>
<td>1111</td>
<td>1178</td>
<td>~60</td>
<td>Flat</td>
</tr>
</tbody>
</table>

© Hughes GSR Inc, 2012

David Hughes
No miracle in #6 either . . . projections
No miracle in #6 either . . .

BC actuals increasing but --

Figure 2 - British Columbia raw gas production versus the number of producing wells from 1990 through 2013.
No miracle in #6 either . . .

WCSB conventional in terminal decline
'Well, in our country,' said Alice, still panting a little, 'you'd generally get to somewhere else — if you ran very fast for a long time, as we've been doing.'

'A slow sort of country!' said the Queen. 'Now, here, you see, it takes all the running you can do, to keep in the same place.

If you want to get somewhere else, you must run at least twice as fast as that!'
Annual Capex Required to Offset Overall Annual Decline by Shale Play

<table>
<thead>
<tr>
<th>Field</th>
<th>Rank</th>
<th>Number of Wells needed annually to offset decline</th>
<th>Approximate Well Cost (million $US)</th>
<th>Annual Well Cost to Offset Decline (million $US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haynesville</td>
<td>1</td>
<td>774</td>
<td>9.0</td>
<td>6966</td>
</tr>
<tr>
<td>Barnett</td>
<td>2</td>
<td>1507</td>
<td>3.5</td>
<td>5275</td>
</tr>
<tr>
<td>Marcellus</td>
<td>3</td>
<td>561</td>
<td>4.5</td>
<td>2525</td>
</tr>
<tr>
<td>Fayetteville</td>
<td>4</td>
<td>707</td>
<td>2.8</td>
<td>1980</td>
</tr>
<tr>
<td>Eagle Ford</td>
<td>5</td>
<td>945</td>
<td>8.0</td>
<td>7558</td>
</tr>
<tr>
<td>Woodford</td>
<td>6</td>
<td>222</td>
<td>8.0</td>
<td>1776</td>
</tr>
<tr>
<td>Granite Wash</td>
<td>7</td>
<td>239</td>
<td>6.0</td>
<td>1434</td>
</tr>
<tr>
<td>Bakken</td>
<td>8</td>
<td>699</td>
<td>10.0</td>
<td>6990</td>
</tr>
<tr>
<td>Niobrara</td>
<td>9</td>
<td>1111</td>
<td>4.0</td>
<td>4444</td>
</tr>
<tr>
<td>Antrim</td>
<td>10</td>
<td>~400</td>
<td>0.5</td>
<td>200</td>
</tr>
<tr>
<td>Bossier</td>
<td>11</td>
<td>21</td>
<td>9.0</td>
<td>189</td>
</tr>
<tr>
<td>Bone Spring</td>
<td>12</td>
<td>206</td>
<td>3.7</td>
<td>762</td>
</tr>
<tr>
<td>Austin Chalk</td>
<td>13</td>
<td>127</td>
<td>7.0</td>
<td>889</td>
</tr>
<tr>
<td>Permian Delaware Midland</td>
<td>14</td>
<td>122</td>
<td>6.9</td>
<td>842</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7641</td>
<td></td>
<td>41829</td>
</tr>
</tbody>
</table>

© Hughes G&R Inc, 2012

(Well cost data from various sources and is approximate)
Shale Gas (true) cost: ~ $6

Figure 14: Total Average Breakeven Costs, All U.S. Natural Gas Producers

Sources: Compiled by author based on work by Foss and Wainberg using industry financial reports.
How could $6 gas sell for $4 (or less) for 4+ years?

- “imperfect storm” -- 2010-14 chronic oversupply condition
 new plays/low cost tiers came in early
 post-recession demand slump
 “held by production” leasing model
 subsidies from associated production (oil, NGL)
 weather: series of mild winters

- consequences
 demand rebuilt (market share from coal, industrial rebound)
 eroding inventory/storage levels
 writeoffs/loss sales/negative free cash flow (undercuts new drilling)

- "the market is working" (slowly)
Polar vortex marks “return to normal volatility”
Trouble ahead . . .
Thank you for your attention and . . .
Ken Zimmerman presentation

Tentative Agenda

Natural Gas Advisory Committee
Northwest Power and Conservation Council
851 S.W. Sixth Avenue
Suite 1100
Portland Oregon 97204-1348

June 6th, 2014
9:00 AM to 12:30 PM
Instructions for GoToMeeting provided below

1. Welcome and introductions
2. Future of industrial use of natural gas in the NW (Ed Finklea)
3. Range of natural gas production and costs (Fred Heutte)
4. Impact of regulatory costs (Ken Zimmerman)
5. Break
6. Strawman proposal for 7th Plan
 a. Preliminary result of fuel price poll
 b. Comparison to other forecasts
7. Monthly Burner-tip gas prices
8. Next steps

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9:00 to 9:15</td>
</tr>
<tr>
<td>2</td>
<td>9:15 to 9:45</td>
</tr>
<tr>
<td>3</td>
<td>9:45 to 10:15</td>
</tr>
<tr>
<td>4</td>
<td>10:15 to 10:45</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11:00 to 12:00</td>
</tr>
<tr>
<td>7</td>
<td>12:00 to 12:20</td>
</tr>
<tr>
<td>8</td>
<td>12:20 to 12:30</td>
</tr>
</tbody>
</table>
Shale Natural Gas – Need for and Possible Results of Regulations

Kenneth R. Zimmerman, PhD
The History Business
Shale Gas has lead to increased production

Source: U.S. Energy Information Administration
Shale Gas has led to lower natural gas prices
Shale Gas has helped reduce CO₂ emissions

<table>
<thead>
<tr>
<th></th>
<th>1990</th>
<th>2005</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated emissions</td>
<td>6,133.2</td>
<td>7,109.4</td>
<td>6,983.1</td>
<td>6,575.5</td>
</tr>
<tr>
<td>(million metric tons CO₂e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from 1990</td>
<td></td>
<td>976.1</td>
<td>849.8</td>
<td>442.3</td>
</tr>
<tr>
<td>(million metric tons CO₂e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(percent)</td>
<td>15.9%</td>
<td>13.9%</td>
<td>7.2%</td>
<td></td>
</tr>
<tr>
<td>Average annual change from 1990 (percent)</td>
<td>1.0%</td>
<td>0.7%</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>Change from 2005</td>
<td></td>
<td></td>
<td>-126.3</td>
<td>-533.8</td>
</tr>
<tr>
<td>(million metric tons CO₂e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(percent)</td>
<td></td>
<td></td>
<td>-1.8%</td>
<td>-7.5%</td>
</tr>
<tr>
<td>Change from 2008</td>
<td></td>
<td>-407.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(million metric tons CO₂e)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(percent)</td>
<td></td>
<td>-5.8%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
But Shale gas has also lead to new concerns

- What chemicals are injected and what impacts do they have?
- Does the injection process itself have negative results, e.g., earthquakes?
- What are the impacts on air quality? Climate change?
- What are the impacts on water quality and conservation (water over use)?
- What are the impacts on “quality of life?”
- With extra supply, should the US export natural gas? What are the consequences if it does? If it does not?
- Does shale gas impede the switch from prime reliance on fossil fuels to prime reliance on “renewable energy?” If so, with what consequences.
Regulations For these Concerns and Results

- Fracking Chemicals
 - Data base
 - Lawsuits about each chemical
 - Liability for damage from chemicals

- Injection Process
 - Drinking water (ground, aquifer, well) contamination – Testing and compensation
 - Earthquakes and damages to building and persons resulting from these
Regulations For these Concerns and Results

☐ Air Quality
 ✔ Violations of Clean Air Act requirements
 ✔ Restrictions on trucks and numbers of well sites and platforms

☐ Climate Change
 ✔ Even with added shale gas CO2 in the atmosphere reached a record level in 2012 of 393.1 ppm, an increase of 0.56 percent
 ✔ Methane emissions increased by 6 ppm per year since 2006, perhaps in part due to increases in shale drilling
Regulations For these Concerns and Results

- **Water**
 - Fixing and/or reversing impacts on drinking water under Clean Water Act
 - Finding, testing, using alternatives to portable water for fracking, e.g., waste water, other chemicals
 - Dealing with restrictions on volume of water use

- **Quality of life**
 - Industrialization of rural areas and communities
 - Thousand fold or more increase in industrial truck traffic
 - New pipelines and other transport/storage infrastructure in rural areas
Regulations For these Concerns and Results

- Expansion of natural gas exports
 - Controlling and/or mitigating added GHG emissions
 - Impacts of new export terminals on various US coasts, e.g. Pacific Northwest

- Impeding switch to renewable energy and reductions in use of fossil fuels
 - Making up for losses in rate and level of new technology development in US
 - Addressing the climate and weather consequences of failures to reduce use of fossil fuels, since fracking helps prolong the use of these fuels
The rejection of an Ohio fracking ban on Monday affirms the notion that many people are opening up to the idea of allowing fracking in their community, despite large opposition and some very valid concerns about its safety. This is the third time in the past year that the ban has been rejected. Armed with support from local unions and industry groups that think fracking is safe and can help create jobs, this rejection was a blow to groups trying to condemn the practice. Even though there have been recent reports of mild earthquakes in Ohio tied directly to fracking, it appears that residents of small towns are not fearful of them yet.

History is always new and unexpected.
Preliminary CO2 mole fractions at the GAW global stations (March 2014; April 2014)

* data are filtered for clean sector
** only night-time values are used to calculate monthly mean
Methane ups and downs.
Globally averaged atmospheric methane concentrations rose quickly before 1992.

E G Nisbet et al. Science 2014;343:493-495
Impact of Environmental Concerns on Shale Gas Prices

From Poll in (2012$/mmBtu)*
Low: $0.28
Med: $0.45
High: $0.67

Source: Black & Veatch
More than 75 percent of Upstream value chain participants believe environmental concerns regarding the hydraulic fracturing process will have no to only a modest impact on the price of shale gas.
What would you recommend

- Should we add the regulatory costs to the natural gas prices?
- Consider the regulatory cost as already included in the high price range?
Break

Tentative Agenda
Natural Gas Advisory Committee
Northwest Power and Conservation Council
851 S.W. Sixth Avenue
Suite 1100
Portland Oregon 97204-1348

June 6th, 2014
9:00 AM to 12:30 PM
Instructions for GoToMeeting provided below

1. Welcome and introductions 9:00 to 9:15
2. Future of industrial use of natural gas in the NW (Ed Finklea) 9:15 to 9:45
3. Range of natural gas production and costs (Fred Heutte) 9:45 to 10:15
4. Impact of regulatory costs (Ken Zimmerman) 10:15 to 10:45
5. Break
6. Strawman proposal for 7th Plan 11:00 to 12:00
 a. Preliminary result of fuel price poll
 b. Comparison to other forecasts
7. Monthly Burner-tip gas prices 12:00 to 12:20
8. Next steps 12:20 to 12:30
Natural Gas Strawman Price Proposal for 2015-2035

- Actual vs projected prices for 2013
Comparison of 2013 Actual & Forecast of Henry Hub natural gas Prices in $2012/mmbtu

- Actual: 3.6
- Low: 3.7
- Med L: 3.8
- Med: 3.9
- Med High: 4
- High: 4.1
Range of HH Prices from Poll (2012 $/MMBTU)
History of Natural Gas Prices at Henry Hub (2012$/Million Btu)
Comparison of 2013 and 2014 Projections for Henry Hub Long-term Prices $2012/mmBtu

- AEO2013 Reference case
- AEO 2014 Reference case
- 2013 Council M
- 2013 Poll Medium
- 2014P Council M
- 2014 Poll- Medium

Northwest Power and Conservation Council
Natural Gas Prices at Henry Hub
Past and Projections
Low Price range
2012$/mmBtu

- Actual
- High oil and gas resource
- Council L
- Poll- LOW

Northwest Power and Conservation Council
Natural Gas Prices at Henry Hub
Past Projections
Medium Range
2012$/mmBtu

- Actual
- AEO 2014 Reference case
- Council M
- Poll- Medium
Natural Gas Prices at Henry Hub
Past and Projections
High Range
2012$/mmBtu

- Actual
- Low oil and gas resource
- Council H
- Poll-High
Natural Gas Prices at Henry Hub
Past and Projections
2012$/mmBtu

- Actual
- AEO2013 Reference case
- AEO 2014 Reference case
- Low oil and gas resource
- High oil and gas resource
- Accelerated coal retirements
- Council L
- Council M
- Council H
- Avista
- Poll-LOW
- Poll-Medium
- Poll-High
Proposed Natural Gas Prices 2012\$ and Nominal

<table>
<thead>
<tr>
<th>Proposed Henry Hub Price Forecasts as of May 20 2014</th>
<th>Nominal Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Council L</td>
<td>Council ML</td>
</tr>
<tr>
<td>2013</td>
<td>3.7</td>
</tr>
<tr>
<td>2014</td>
<td>3.9</td>
</tr>
<tr>
<td>2015</td>
<td>4.0</td>
</tr>
<tr>
<td>2020</td>
<td>4.2</td>
</tr>
<tr>
<td>2025</td>
<td>4.4</td>
</tr>
<tr>
<td>2030</td>
<td>4.7</td>
</tr>
<tr>
<td>2035</td>
<td>4.9</td>
</tr>
<tr>
<td>Average 2015-2035</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Your recommendations?

- Lower growth rate in long-term (post 2025 prices)?
- Increase high range of prices?
- Add explicit Regulatory Cost to the prices?
Issues impacting Forecast of Oil Prices

- Ban on export of crude oil
- Transportation (trains and pipelines)
- Monterey shale downgrade
- Rapid decline in production- need for new non-conventional wells
- High capital cost
Issues Impacting Oil Prices

- Ban on export of crude oil
- Mismatch between refining capability and tight oil supplies
- Transportation (trains and pipelines)
- Monterey shale downgrade
2500 New Wells a year are needed to sustain output of 1 Million barrels a day in Bakken Shale.

Bakken New-well oil production per rig

- **New-well oil production per rig:** barrels/day
- **Rig count:** rigs

Bakken New-well gas production per rig

- **New-well gas production per rig:** thousand cubic feet/day
- **Rig count:** rigs

Bakken Legacy oil production change

- **Thousand barrels/day**

Bakken Legacy gas production change

- **Million cubic feet/day**
Proposed Refiners Acquisition Costs Forecast
$2012/Barrel

Actual
AEO-Low
Poll-Low
Council Prop. Low
IHSGlobal-Low
AEO-Medium
Poll Medium
Council Prop. Medium
IHSGlobal-Medium
AEO-High
Poll High
Council Prop. High
IHSGlobal-High

Northwest Power and Conservation Council
nwcouncil.org
Range of Proposed RAC Forecast

2012$/Barrel

<table>
<thead>
<tr>
<th>Council</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
<th>Poll-Low</th>
<th>Poll Median</th>
<th>Poll High</th>
<th>IHS-Low</th>
<th>IHS-Medium</th>
<th>IHS-High</th>
<th>AEO-Low</th>
<th>AEO-Medium</th>
<th>AEO-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>89.0</td>
<td>101</td>
<td>103</td>
<td>88</td>
<td>96</td>
<td>106</td>
<td>69</td>
<td>81</td>
<td>86</td>
<td>66</td>
<td>89</td>
<td>124</td>
</tr>
<tr>
<td>2020</td>
<td>84.6</td>
<td>106</td>
<td>114</td>
<td>91</td>
<td>100</td>
<td>111</td>
<td>79</td>
<td>84</td>
<td>88</td>
<td>67</td>
<td>95</td>
<td>148</td>
</tr>
<tr>
<td>2025</td>
<td>80.5</td>
<td>112</td>
<td>126</td>
<td>96</td>
<td>108</td>
<td>121</td>
<td>78</td>
<td>85</td>
<td>89</td>
<td>68</td>
<td>107</td>
<td>157</td>
</tr>
<tr>
<td>2030</td>
<td>76.6</td>
<td>117</td>
<td>139</td>
<td>102</td>
<td>117</td>
<td>133</td>
<td>76</td>
<td>87</td>
<td>91</td>
<td>70</td>
<td>117</td>
<td>172</td>
</tr>
<tr>
<td>2035</td>
<td>72.8</td>
<td>123</td>
<td>153</td>
<td>104</td>
<td>122</td>
<td>142</td>
<td>73</td>
<td>87</td>
<td>90</td>
<td>71</td>
<td>128</td>
<td>186</td>
</tr>
</tbody>
</table>
Refiners Acquisition Cost of Oil 2012 $ and Nominal $ per Barrel

<table>
<thead>
<tr>
<th>Council</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>89.0</td>
<td>101</td>
<td>103</td>
</tr>
<tr>
<td>2020</td>
<td>84.6</td>
<td>106</td>
<td>114</td>
</tr>
<tr>
<td>2025</td>
<td>80.5</td>
<td>112</td>
<td>126</td>
</tr>
<tr>
<td>2030</td>
<td>76.6</td>
<td>117</td>
<td>139</td>
</tr>
<tr>
<td>2035</td>
<td>72.8</td>
<td>123</td>
<td>153</td>
</tr>
<tr>
<td>2015-2020</td>
<td>-1.0%</td>
<td>1.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>2020-2025</td>
<td>-1.0%</td>
<td>1.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>2025-2030</td>
<td>-1.0%</td>
<td>1.0%</td>
<td>2.0%</td>
</tr>
<tr>
<td>2030-2035</td>
<td>-1.0%</td>
<td>1.0%</td>
<td>2.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Council</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>93</td>
<td>106</td>
<td>108</td>
</tr>
<tr>
<td>2020</td>
<td>96</td>
<td>121</td>
<td>129</td>
</tr>
<tr>
<td>2025</td>
<td>100</td>
<td>138</td>
<td>156</td>
</tr>
<tr>
<td>2030</td>
<td>104</td>
<td>159</td>
<td>188</td>
</tr>
<tr>
<td>2035</td>
<td>108</td>
<td>182</td>
<td>227</td>
</tr>
<tr>
<td>2015-2020</td>
<td>0.6%</td>
<td>2.7%</td>
<td>3.7%</td>
</tr>
<tr>
<td>2020-2025</td>
<td>0.7%</td>
<td>2.7%</td>
<td>3.8%</td>
</tr>
<tr>
<td>2025-2030</td>
<td>0.7%</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>2030-2035</td>
<td>0.8%</td>
<td>2.8%</td>
<td>3.9%</td>
</tr>
</tbody>
</table>
Your recommendations?

- Keep the proposed prices?
- Lower the long-term growth in price of oil?
- Increase the high range of prices?
Coal Issues

- Retirement of existing coal power plants.
- Impact of EPAs New 111D regulations
- Declining productivity
Coal Production Productivity

(Short Tons/Hour of Labor)

- United States
- Appalachia
- Northern
- Central
- Interior
- Illinois Basin
- Western
- Powder River Basin
Proposed Powder River Basin Minemouth Coal Price Forecast
$2012/mmBtu

- Actual
- Council Prop. Low
- Council Prop. Medium
- Council Prop. High
- AEO2014 LOW
- AEO2014 Reference
- AEO2014 High
- SNL

Northwest Power and Conservation Council
Proposed Powder River Basin Coal Price Forecast

<table>
<thead>
<tr>
<th>Year</th>
<th>Low (2012$/mmBtu)</th>
<th>Medium (2012$/mmBtu)</th>
<th>High (2012$/mmBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0.65</td>
<td>0.76</td>
<td>0.88</td>
</tr>
<tr>
<td>2020</td>
<td>0.63</td>
<td>0.80</td>
<td>1.02</td>
</tr>
<tr>
<td>2025</td>
<td>0.62</td>
<td>0.84</td>
<td>1.18</td>
</tr>
<tr>
<td>2030</td>
<td>0.60</td>
<td>0.88</td>
<td>1.37</td>
</tr>
<tr>
<td>2035</td>
<td>0.59</td>
<td>0.93</td>
<td>1.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Low (Nominal Dollars/mmBtu)</th>
<th>Medium (Nominal Dollars/mmBtu)</th>
<th>High (Nominal Dollars/mmBtu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>0.67</td>
<td>0.79</td>
<td>0.91</td>
</tr>
<tr>
<td>2020</td>
<td>0.71</td>
<td>0.90</td>
<td>1.14</td>
</tr>
<tr>
<td>2025</td>
<td>0.75</td>
<td>1.03</td>
<td>1.44</td>
</tr>
<tr>
<td>2030</td>
<td>0.80</td>
<td>1.17</td>
<td>1.82</td>
</tr>
<tr>
<td>2035</td>
<td>0.86</td>
<td>1.35</td>
<td>2.31</td>
</tr>
</tbody>
</table>
Your recommendations

- Keep the proposed prices?
- Lower the long-term growth in price of Coal?
- Increase the high range of prices?
Monthly Burner-tip gas prices

Tentative Agenda
Natural Gas Advisory Committee
Northwest Power and Conservation Council
851 S.W. Sixth Avenue
Suite 1100
Portland Oregon 97204-1348

June 6th, 2014
9:00 AM to 12:30 PM
Instructions for GoToMeeting provided below

1. Welcome and introductions 9:00 to 9:15
2. Future of industrial use of natural gas in the NW (Ed Finklea) 9:15 to 9:45
3. Range of natural gas production and costs (Fred Heutte) 9:45 to 10:15
4. Impact of regulatory costs (Ken Zimmerman) 10:15 to 10:45
5. Break
6. Strawman proposal for 7th Plan 11:00 to 12:00
 a. Preliminary result of fuel price poll
 b. Comparison to other forecasts
7. Monthly Burner-tip gas prices 12:00 to 12:20
8. Next steps 12:20 to 12:30
Next steps

- Data from natural gas price forecast is used
 - Demand forecasting model - to calculate retail rates
 - In RPM model, where stochastic shock to prices are introduced.
 - In Aurora model, where future wholesale price of electricity is estimated.
Forecasting Natural Gas Prices Is Like Engaging in Commodity Trading

Which of these commodity price trends is natural gas?
Commodity Price Index

1991 = 1.0

Indices shown are stacked
Range of Forecast Natural Gas Price Delivered to Electric Utilities PNW East & Deciles used in RPM (2006$/mmBTU)

For illustration only
Analytical Steps in Forecasting Wholesale Electricity Prices (Aurora)

- Estimate monthly shape factors
- Forecast monthly prices for each hub
- Regress utility delivered cost of fuel against hub prices.
- Estimate fixed and variable cost of transportation.
- Forecast monthly variable cost of fuel for each generation node.
Monthly Shape of Natural Gas Prices at Henry Hub

Ratio of Monthly to Annual Prices - Based on 2000-2013 Data
Monthly Shape of Natural Gas Prices at Various Hubs

Based on 2000-2013 monthly hub price data
Are there further issues we need to consider in our fuel price projections?
Thank You
for your participation
&
Safe Travels