The Role of Electric Energy Efficiency in Reducing PNW Carbon Emissions

> Tom Eckman Manager, Conservation Resources Northwest Power and Conservation Council

Presented June 8, 2006 Global Warming in the Pacific Northwest: Consequences and Choices

What You're About To Hear

- Energy Efficiency and the Current PNW Resource
 Mix
- Regional Efficiency Goals

 5th Northwest Power and Conservation Plan

 What's Behind the Goals

 Money, Risk and Carbon Benefits

 Could We Do More?

PNW Energy Efficiency Achievements 1978 - 2004

Cumulative 1978 - 2004 Efficiency Achievements by Source

Energy Efficiency Resources Significantly Reduced Projected PNW Electricity Sales

Power and Conservation

Energy Efficiency Met Nearly 40% of PNW Regional Firm Sales Growth Between 1980 - 2003

Utility Acquired Energy Efficiency Has Been <u>A BARGAIN!</u>

Regional Utility Conservation Acquisitions Have Also Helped Balance Loads & Resources

Creating Mr. Toad's Wild Ride for the PNW's Energy Efficiency Industry

Conservation

So What's 3000 aMW?

It's enough electricity to serve the <u>entire</u> <u>state of Idaho</u> and <u>all of Western</u> <u>Montana</u>

- It's enough electricity to meet nearly 60% of Oregon total electricity use
- It saved the region's consumers more than <u>\$1.25 billion</u> in 2004
- It lowered 2004 PNW carbon emissions by an estimated <u>13 million</u> tons.

IS THAT AS GOOD AS IT GETS?

<u>Advertise with Us</u> - <u>Business Solutions</u> - <u>Services & Tools</u> - <u>Jobs, Press, & Help</u> <u>Make Google Your Homepage!</u> ©2003 Google - Searching 3,307,998,701 web pages

PNW Energy Efficiency Potential

Conservation

PNW Portfolio Planning – Scenario Analysis on Steroids

Plans Along the Efficient Frontier Permit Trade-Offs of Costs Against Risk

All Plans Along the "Efficient Frontier" Had Roughly Equivalent Amounts of Conservation = 2600 –2800 aMW*

slide 16

* Medium Load Forecast Loads & Market Prices

Northwest Power and Conservation Council

Timing Matters – Three Conservation Deployment Schedules Tested

onservation

slide 17

Accelerating Conservation Development Reduces Cost & Risk

Accelerating Conservation Reduces Carbon Dioxide Emissions

Conservation

Meeting 5th Plan's Conservation Targets Reduces Forecast PNW Power System CO2 Emissions in 2025 by Nearly 20%

5th Plan Relies on Conservation and Renewable Resources to Meet Load Growth *

*Actual future conditions (gas prices, CO2 control, conservation accomplishments) will change resource development schedule and amounts

Near-Term Conservation Targets (2005-2009) = 700 aMW

Could We Do More?

Would Higher Carbon Control Cost Assumptions Significantly Increase the Amount of Cost-Effective PNW Electricity Conservation Potential (and reduced carbon emissions)?

There's Remaining Electric Energy Efficiency Potential

*Without "Certain" Carbon Control

The 5th Plan Already Includes Expected Value of CO2 Control "Risk"

Northwest Resources "on the margin" 5th Plan Resource Portfolio

Estimated Annual Average Marginal PNW Power System CO2 Emissions Factors

Conservation

slide 27

Impact of Higher Assumed CO2 "Control" Cost

- Assuming PNW CO2 Emissions Factor of ~ 1 lb/kWh
 - A \$10/ton CO2 change in emissions "control" cost increases <u>forecasted</u> market prices by approximately \$4/MWh
 - A \$40/ton CO2 change in emissions "control" cost increases *forecasted* market prices by approximately \$16/MWh

Carbon Control Might Make 4% to 15% More Conservation "Cost-Effective"

Summary

- The 5th Plan relies on "non-carbon" producing resources to meet 85-90% of anticipated load growth
- The Plan considered "carbon control" risk
- Higher and more certain carbon control costs assumptions could make 4-15% more conservation cost-effective
- There are probably cheaper near-term options for carbon control than the PNW Power System

PNW Energy Efficiency Resource Development 2000-2004

