Presentation to NWPCC
(10/17/2008)

Prepared by
Dr. Robert Klein

October 17, 2008
Agenda

- Overview of Symbiotics
- Run of the River Projects
- Utah Pumped Storage Projects - Detailed Descriptions
- Parker Knoll-800MW
- North Eden-700MW
- Other WECC Opportunities
- Discussion
How We Got Here

We in the Northwest know the beauty and value of hydrogeneration. It is the rest of the world that needs an education.

Symbiotics is the story of Persistence.

Calvin Coolidge 1932:
- “Nothing in the world can take the place of Persistence.
- Talent will not; nothing is more common than unsuccessful men with talent.
- Genius will not; unrewarded genius is almost a proverb.
- Education will not; the world is full of educated derelicts.
- Persistence and determination alone are omnipotent.
- The slogan 'Press On' has solved and always will solve the problems of the human race.

Pumped Storage is hydrogeneration its most engineered form:
- Clean
- Inexpensive
- Flexible
- Efficient
- Plentiful
- Environmentally responsible
- A perfect complement to wind (and nuclear)

Alan Eddison 2007:
- Modern technology owes ecology an apology.

If you had to identify, in one word, the reason why the human race has not achieved, and never will achieve, its full potential, that word would be "meetings."
Symbiotics LLC was formed to become a clean and significant, hydro-based Independent Power Producer in the western U.S.

- Formed by combining the resources and expertise of Ecosystems Research Institute and Northwest Power Services with leading power industry commercial expertise; Principals each have a 30 year track record in hydroelectric, environmental and energy projects
- 250 environmental projects since 1975
- Environmental studies on 19 FERC projects for third-party owners
- 4 hydroelectric plants currently operated for third-party owners
- Chester license granted July 08; Dorena License expected Fall 08
- We hold Preliminary permits on 2 pumped storage sites in Utah { Parker Knoll and North Eden}
- 8 RoR projects in the FERC licensing process
- 34 permits in development
- 11 FERC licensing Contracts
- 60+ years of utility, regulatory, trading and structuring expertise, including PPA and Financing

- There are 10^{11} stars in the galaxy.
- That used to be a huge number.
- But it's only a hundred billion.
- It's less than the national deficit! We used to call them astronomical numbers.
- Now we should call them economical numbers.
- Richard Feynman, physicist, Nobel laureate (1918-1988)
Symbiotics’ In-house Expertise

Opportunity Identification
- Database Development
- Model Development
- Site Location

Preliminary Permit Application
- Vetted by Cost/Benefit
- Vetted by Environmental Liabilities

Licensing Process
- Environmental Investigations
- Consultations
- Mitigation Agreements
- License Application

Detail and Final Design
- Project Engineering
- Final Mitigation Design

Project Construction
- Power Plant
- Transmission Lines
- Environmental Mitigation
- Capacity and Energy Marketing
- Interface with Community

Project Operation
- Plant Maintenance/Operation
- Mitigation Monitoring

Project Contracting
- Extensive PPA Negotiation Expertise
- Senior contacts at most major utilities, IPPs, and munis
Run-of-River Projects

Dorena Dam
FERC No. 11945

Applegate Dam
FERC No. 11910

Fall Creek Dam
FERC No. 12617

Chester Dam
FERC No. 11879

Clark Canyon Dam
FERC No. 12429
Historical Perspective of Hydro Development

Number of Licenses Filed with FERC

- **New Licenses**
- **Relicenses**

---|---|---|---|---|---|---|---|---|---|---|---|---|---|---
| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140

- [Image of bar chart showing number of licenses filed with FERC from 1980 to 2006]
Phase I
Mechanized Selection and Permitting Process
(2001-2006)
Summary of Symbiotics’ Permitting Efforts 2001-2006

282 permits (62%)

FERC DECISIONS

191 permits granted (74%)

12% Lost to Existing License
4% Lost to Competition
10% Lost to Non-jurisdiction

INTERNAL MORTALITY

18 permits (9%)

81% (169) Voluntary Surrender
10% (22) Expired

PRESENT STATUS

FLA submissions: 4
Active permits: 14

Other Entities

172 Permits (38%)
Phase I

Summary of Existing Projects (75 MW)

<table>
<thead>
<tr>
<th>Project</th>
<th>FERC No.</th>
<th>Permit Filed</th>
<th>Expected License Date</th>
<th>Capacity (kW)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chester</td>
<td>11879</td>
<td>06/1/01</td>
<td>Granted July 08</td>
<td>3.3</td>
<td>License Issued</td>
</tr>
<tr>
<td>Applegate</td>
<td>11910</td>
<td>09/25/01</td>
<td>Winter 08/09</td>
<td>10</td>
<td>License filed, FERC Final EA Published</td>
</tr>
<tr>
<td>Bowman</td>
<td>11925</td>
<td>03/28/01</td>
<td>Feb-11</td>
<td>6.8</td>
<td>Waiting on WSR boundary change from the BLM (winter 2008/09)</td>
</tr>
<tr>
<td>Dorena</td>
<td>11945</td>
<td>07/27/01</td>
<td>Fall-08</td>
<td>8.3</td>
<td>License filed, FERC Final EA Completed, License Pending Issuance</td>
</tr>
<tr>
<td>Clark Canyon</td>
<td>12429</td>
<td>08/15/03</td>
<td>Summer 09</td>
<td>4.8</td>
<td>License filed, Anticipated EA December 2008</td>
</tr>
<tr>
<td>Wailua</td>
<td>12534</td>
<td>03/25/05</td>
<td>Apr-11</td>
<td>6.6</td>
<td>Negotiating State Lands use</td>
</tr>
<tr>
<td>Oologah</td>
<td>12538</td>
<td>03/03/08 refiled</td>
<td>Jan-12</td>
<td>25.7</td>
<td>PAD filed in February 2008, Second PPA Public Noticed</td>
</tr>
<tr>
<td>Fall Creek</td>
<td>12778</td>
<td>06/21/07</td>
<td>Sep-11</td>
<td>6</td>
<td>PAD Accepted, Studies Implemented</td>
</tr>
<tr>
<td>Wickiup</td>
<td>12965</td>
<td>08/17/07</td>
<td>Jan-12</td>
<td>7.2</td>
<td>PAD completed, Negotiating Study Plans</td>
</tr>
</tbody>
</table>
Symbiotics is Using Proprietary and Public Databases to Select and Site Additional Projects for Phase II

• ROR Sites Started with over 2,000 projects
• Collected publicly available Flow and Head daily data
• Calculate Preliminary Estimated IRR by:
 • Generation
 • Costs by INEEL’s 2003 report
 • Estimated revenue
• Projects with above 5% Preliminary Estimated IRR moves to Phase II

• Added Pumped Storage Projects
 * Geologic Features
 * Land Ownership
 * Location
ROR Project Sizing

• An IRR vs. Capacity chart is completed under different scenarios.
• The common scenarios involve increasing the project’s costs at different inflation rates but keeping the revenue sources constant.
ROR ENVIRONMENTAL REVIEW (Phase II)

• Vetted Database to 170 projects, FERC Filings on 80 Sites
• Preliminary Environmental Review
 - FERC Jurisdiction
 - Water Quality compliance (maintain status quo)
 - Environmental issues that impact operation (Exotic Zebra Mussels)

Projects with preliminary estimated IRR greater than 20% continue to Phase IIC (Feasibility Study)
ROR Detailed Feasibility (Phase II)

- Flow
- Head
- Permitting difficulty
- Transmission Access
- Capacity and generation (Preferred Provider)
- Estimated costs
- Estimate annual revenue and O&M costs
- Select equipment configuration based on estimated IRR
- Firm up estimate for selected configuration and calculate IRR
- Review by separate engineering firm
ROR Mechanized Selection and Permitting Process (2007 to Current)

Identified Projects

Preliminary Permits
PUMPED STORAGE OPPORTUNITIES

- Concept
- Relative Cost
- Benefits
- Market Considerations
- Symbiotics Projects
New Pumped Storage Projects

* Symbiotics is applying its disciplined siting, licensing and permitting approach to pumped storage hydro.

* Symbiotics is seeking development partners for U.S. pumped storage hydro projects.
Pumped Storage Model –Concept

Open Loop
 ► Lower reservoir is a lake or river

Closed Loop (CLPS)
 ► Utilize topography to establish two adjacent reservoirs with sufficient height differential
 ► Access ground water if necessary

Off Peak Load Utilization (Spread Option Model)
 ► Capture Delta Between On and Off Peak Power
 • Use tariff priced Off-Peak power.

 ► Pumped Storage is a conservative “spread-play” on the on/off peak electricity price spread. For Utah area spread will grow slowly - capacity additions are difficult and California/Las Vegas demand is growing.

Designed for rapid switch between pumping and generation to allow sale of balancing and spinning reserve services.

“Renewable” Wind Support:
 ► Exchange peak hour electricity for off peak hour wind for pumping electricity, converting the pumped storage plant into a renewable resource, eligible for renewable RFPs; enable increased wind integration.

Moody’s New Generation Report

National Grid Renewables Report

Value Buckets
 ► Fully Utilize Transmission Capacity {incremental peak hour sales}
 ► Firm Non-firm Blocks {“Flex” pumped storage unit as wind varies}
 ► Provide Balancing Service, Spinning Reserve Service, Sell Surplus Ancillary Services
 ► Help prevent “ERCOT disasters”
Pumped Storage Model (Energy Cost Comparisons)

- **Run-of-River Hydro** ($1,500-$2,500/kW)
 - $60-$80/MWh variable cost
 - GHG producer

- **Natural Gas-Fired Thermal** ($1500-$2,500/kW)
 - $60-$80/MWh variable cost
 - GHG producer

- **Coal Fired Thermal** ($1,000-$5,000/kW)
 - $40-$60/MWh variable cost
 - GHG producer
 - Multiple technologies
 - Political confusion

- **Wind** (prime sites getting more scarce) ($2,000-$3,000/kW)
 - Non dispatchable
 - Visual pollution and bird kill issues
 - Integration issues

- **Nuclear** ($3,000-$5,000/kW)
 - $10-$30/MWh variable cost
 - Unsolved nuclear waste disposal issues
 - Very long licensing and construction time
 - Multiple technologies
 - Political turmoil
 - Site remediation issues
 - Base Load source Only

- **Photo-voltaic Solar** ($3,000-$4,000/kW)
 - $10-$30/MWh variable cost
 - Dependent on solar conditions for dispatch
 - Clouds
 - Night

- **Pumped Storage** ($1,000-$1,500/kW)
 - $15-25/MWh variable cost
 - Fewer environmental concerns with CLPS
 - 50-year Federal License
Current FERC Pumped Storage Projects

North Eden

Parker Knoll
Geography

[Map with geographical locations and markers, indicating service areas and infrastructure like transmission lines and substations.]

- PacifiCorp service area
- Planned transmission lines
- 500 kV minimum voltage
- 345 kV minimum voltage
- 230 kV minimum voltage
- Transmission hub
- Substation
- Generation plant/station
Parker Knoll Pumped Storage Project

- Project Description
- Physical Features
- Licensing Strategy
- Project Schedule
- Capital Cost Components
Parker Knoll Project Description

- Nominal 798 MW power project (Can be Upsized to 1,330 MW)
- FERC No. 13239-001
- Hydrologic Head 2,590
- Upper Reservoir on Parker Knoll
- Lower Reservoir on alluvial valley floor (Grass Valley)
- Power plant located adjacent to the lower reservoir
- Upper and Lower Reservoirs 13,000 feet apart
- Power plant ~ located near lower reservoir
- Total Water Volume: 7,800 ac ft initial fill, 400 ac ft annual depletion
- Water rights required for evaporation and initial fill only (Sevier River WCD)
- Terrestrial Impacts only
- Land Ownership
 - * SITLA – 950 acres
 - * BLM – 1,360 acres
 - * No Private land
Parker Knoll Pumped Storage Project
Physical Features (798 MW)

- 6 x 133 MW pump turbine machines
- Operating Range 2,590 to 2,440 vertical feet
- Upper Reservoir (125 acres and 148 ft tall) with 8,212 ac ft capacity
- Lower Reservoir (117 acres and 100 ft tall) with 8,689 ac ft capacity
- Power plant ~(450 ft x 120 ft x 45 ft) located adjacent to the lower reservoir
- Upper and Lower Reservoirs 13,000 feet apart
 - 9,800 ft long 18 ft diameter tunnel
 - 3,200 ft long 18 ft diameter above ground Penstock
- Power plant located near lower reservoir
- Total Water Volume: 8,689 ac ft initial fill, 400 ac ft annual depletion
- 800 cfs per unit
- 0.3 mi 345 KV Transmission line, 50 mile Upgrade of RMP line
- At 10 hrs per day, 2.18 million kW hrs per year
- Project Designed For 10-20 hour continuous operation depending on when reserve is needed
Parker Knoll Capital Cost Components

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
<th>6x133 MW 2008 $</th>
<th>6x133 MW 2011 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Upper Reservoir</td>
<td>$69,190,798</td>
<td>$77,830,000</td>
</tr>
<tr>
<td>1.2</td>
<td>Shaft/Tunnel/Penstock (Upper)</td>
<td>$201,373,000</td>
<td>$233,158,000</td>
</tr>
<tr>
<td>1.3</td>
<td>Lower Reservoir</td>
<td>$115,566,749</td>
<td>$129,996,000</td>
</tr>
<tr>
<td>1.4</td>
<td>Shaft/Tunnel/Penstock (Lower)</td>
<td>$7,710,000</td>
<td>$8,672,000</td>
</tr>
<tr>
<td>2.1</td>
<td>Powerhouse Major Electrical</td>
<td>$22,695,000</td>
<td>$25,528,000</td>
</tr>
<tr>
<td>2.2</td>
<td>Powerhouse Auxiliary-Mechanical</td>
<td>$29,000,000</td>
<td>$36,532,000</td>
</tr>
<tr>
<td>2.3</td>
<td>Powerhouse Auxiliary-Electrical</td>
<td>$16,490,934</td>
<td>$20,774,000</td>
</tr>
<tr>
<td>2.4</td>
<td>Powerhouse Turbine-Generator(6X133 MW)</td>
<td>$180,000,000</td>
<td>$226,748,000</td>
</tr>
<tr>
<td>3.0</td>
<td>Transmission Line</td>
<td>$82,098,044</td>
<td>$103,393,000</td>
</tr>
<tr>
<td>4.0</td>
<td>Water Rights/ROW</td>
<td>$3,560,000</td>
<td>$4,005,000</td>
</tr>
<tr>
<td>5.1</td>
<td>Contingency (Civil 25%)</td>
<td>$105,023,887</td>
<td>$119,797,250</td>
</tr>
<tr>
<td>5.2</td>
<td>Contingency (Electrical 15%)</td>
<td>$46,138,347</td>
<td>$58,117,050</td>
</tr>
<tr>
<td>6.0</td>
<td>Pre-design Engineering</td>
<td>$2,000,000</td>
<td>$2,250,000</td>
</tr>
<tr>
<td>7.0</td>
<td>Environmental/Permitting</td>
<td>$3,050,000</td>
<td>$3,431,000</td>
</tr>
<tr>
<td>Total Project Construction Cost</td>
<td>$883,896,758</td>
<td>$1,050,231,300</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>Engineering Design Cost (5%)</td>
<td>$44,195,000</td>
<td>$52,512,000</td>
</tr>
<tr>
<td>9.0</td>
<td>Construction Mgt./Inspection Cost (5%)</td>
<td>$44,195,000</td>
<td>$52,512,000</td>
</tr>
<tr>
<td>Total Project Design/Construction Cost</td>
<td>$972,286,758</td>
<td>$1,155,255,300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cost/kW with Transmission Line</td>
<td>$1,218</td>
<td>$1,448</td>
</tr>
<tr>
<td></td>
<td>Cost/kW without Transmission Line</td>
<td>$1,116</td>
<td>$1,318</td>
</tr>
<tr>
<td></td>
<td>Total Plant Capacity (MW)</td>
<td>798</td>
<td>798</td>
</tr>
</tbody>
</table>
Parker Knoll Permit Schedule

<table>
<thead>
<tr>
<th>ACTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Permit Application Accepted</td>
<td>June 2008</td>
</tr>
<tr>
<td>Preliminary Permit Application Granted</td>
<td>Dec 2008</td>
</tr>
<tr>
<td>PAD Submitted (Request FERC for Determination)</td>
<td>Feb 2009</td>
</tr>
<tr>
<td>Final License Application Submitted</td>
<td>March 2010</td>
</tr>
<tr>
<td>Land Lease Agreements</td>
<td>Feb 2009</td>
</tr>
<tr>
<td>Purchase Water Rights</td>
<td>Mar 2009</td>
</tr>
<tr>
<td>401 Water Quality Certificate Application</td>
<td>Mar 2010</td>
</tr>
<tr>
<td>Start of Construction</td>
<td>2012</td>
</tr>
<tr>
<td>Project Operation</td>
<td>2014-15</td>
</tr>
</tbody>
</table>
North Eden Pumped Storage Project

- Project Description
- Physical Features
- Project Schedule
- Capital Cost Components
North Eden Project Description

- Nominal 700 MW power project
- FERC No. 13249
- Hydrologic Head 927 vertical feet
- Upper reservoir on the flank of Black Mountain
- Lower reservoir in North Eden Valley
- Power plant located adjacent to the lower reservoir
- Total Volume 13,716 ac ft initial fill, 400 ac ft annual depletion
- Water rights required for evaporation and initial fill only

Terrestrial Impacts

- North Eden Creek Impacts
- 2.03 million MWh annually

Land ownership

- SITLA – 485 acres
- Private – 225 acres
- NO Federal Land
North Eden Pumped Storage Project
Physical Features

- 7 x 100 MW pump turbine machines
- Operating Range 745-927 vertical feet
- Upper Reservoir (132 Acres and 100 ft tall) with 10,510 ac ft capacity
- Lower reservoir (250 acres and 148 ft tall) with 13,716 ac ft capacity
- Power plant ~(350 ft x 120 ft x 45 ft) in size
- Total Volume 13,716 ac ft initial fill, 400 ac ft annual depletion
- 1,880 cfs per Unit
- 5.0 Miles new 500 KV line
North Eden Capital Cost Components

<table>
<thead>
<tr>
<th>Item #</th>
<th>Description</th>
<th>Total - 2008$</th>
<th>Total - 2011$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Upper Reservoir</td>
<td>$142,989,000</td>
<td>$160,843,000</td>
</tr>
<tr>
<td>1.2</td>
<td>Shaft/Tunnel/Penstock (Upper)</td>
<td>$54,537,500</td>
<td>$68,359,000</td>
</tr>
<tr>
<td>1.3</td>
<td>Lower Reservoir</td>
<td>$35,180,000</td>
<td>$39,572,000</td>
</tr>
<tr>
<td>1.4</td>
<td>Shaft/Tunnel/Penstock (Lower)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.1</td>
<td>Powerhouse Major Electrical</td>
<td>$14,784,000</td>
<td>$16,630,000</td>
</tr>
<tr>
<td>2.2</td>
<td>Powerhouse Auxiliary-Mechanical</td>
<td>$42,750,000</td>
<td>$53,852,000</td>
</tr>
<tr>
<td>2.3</td>
<td>Powerhouse Auxiliary-Electrical</td>
<td>$24,212,500</td>
<td>$30,500,000</td>
</tr>
<tr>
<td>2.4</td>
<td>Powerhouse Turbine-Generator(7X100 MW)</td>
<td>$210,000,000</td>
<td>$264,540,000</td>
</tr>
<tr>
<td>3.0</td>
<td>Transmission Line</td>
<td>$9,010,000</td>
<td>$11,324,000</td>
</tr>
<tr>
<td>4.0</td>
<td>Water Rights/ROW</td>
<td>$328,500</td>
<td>$369,000</td>
</tr>
<tr>
<td>5.1</td>
<td>Contingency (Civil 25%)</td>
<td>$61,954,750</td>
<td>$71,443,250</td>
</tr>
<tr>
<td>5.2</td>
<td>Contingency (Electrical 15%)</td>
<td>$42,895,875</td>
<td>$54,032,400</td>
</tr>
<tr>
<td>6.0</td>
<td>Pre-design Engineering</td>
<td>$2,000,000</td>
<td>$2,250,000</td>
</tr>
<tr>
<td>7.0</td>
<td>Environmental/Permitting</td>
<td>$3,050,000</td>
<td>$3,050,000</td>
</tr>
<tr>
<td>8.0</td>
<td>Engineering Design Cost (5%)</td>
<td>$32,185,000</td>
<td>$38,838,000</td>
</tr>
<tr>
<td>9.0</td>
<td>Construction Mgt./Inspection Cost (5%)</td>
<td>$32,185,000</td>
<td>$38,838,000</td>
</tr>
<tr>
<td></td>
<td>Total Project Construction Cost</td>
<td>$643,692,125</td>
<td>$776,764,650</td>
</tr>
<tr>
<td>10.0</td>
<td>Cost/kW with Transmission Line</td>
<td>$1,012</td>
<td>$1,221</td>
</tr>
<tr>
<td>11.0</td>
<td>Cost/kW without Transmission Line</td>
<td>$999</td>
<td>$1,204</td>
</tr>
<tr>
<td>12.0</td>
<td>Total Plant Capacity (MW)</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>ACTION</td>
<td>DATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Permit Application Accepted</td>
<td>June 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Permit Application Granted</td>
<td>Dec 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Application Document Submitted</td>
<td>Jan 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final License Application Submitted</td>
<td>Nov 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Lease Agreements</td>
<td>Mar 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchase Water Rights</td>
<td>May 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>401 Water Quality Certificate Application</td>
<td>Mar 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of Construction</td>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Operation</td>
<td>2014-15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pumped Storage Model - Benefits

- Capture Delta Between On and Off Peak Power
- Reduce Transmission Costs for Wind Integration ($3.0-$24.0/MWhr)**
- Full range of Ancillary Services
 - Regulation, Load Following and Voltage Support
 - Dispatchable in 15 seconds (with units spinning)
 - Black start in 15 seconds
- Increased System Reliability
- Add Value To Wind and Other Renewable Energy Projects
 - Sale of both Capacity and Energy possible
 - Sales partitioned by turbine to preserve capacity opportunities

** Northwest Wind Integration Action Plan, March 2007
Electricity Market Considerations

- Market Price Volatility: Electricity, Natural Gas, Oil
- Carbon Tax
 - ($15 - $20/MWh upside impact)
- Natural Gas Market
 - In the U.S. marginal natural gas supply is LNG. Peak hour price will rise.
- Uranium Market
 - More uranium is consumed worldwide than is produced. The difference is made up by reprocessing surplus Russian missile warheads.
 - This source will run out.
 - Uranium price will rise.
 - Base load price will rise
Additional WECC Opportunities

Besides Parker Knoll and North Eden Symbiotics is pursuing additional WECC pumped storage opportunities.

They are few, difficult to identify and permit; but we will persist.
Selected Pumped Storage Project Sites within WECC
Discussion