Sixth Power Plan Overview | Summary | . 1 | |----------------------------------------------|-----| | Future Regional Electricity Needs | | | Resource strategy | | | Efficiency | | | Generation Alternatives | | | Climate Change Policy | . 6 | | Capacity, Flexibility, and Wind Integration | | | Fish and Wildlife Program and the Power Plan | | ### **SUMMARY** The Pacific Northwest power system is faced with significant uncertainties about the direction and form of climate change policy, future fuel prices, salmon recovery actions, economic growth, and integrating rapidly growing amounts of variable wind generation. And yet the focus of the Council's power plan is clear, especially with regard to the important near-term actions. The Council's power plan addresses the risks these uncertainties pose for the region's electricity future and seeks an electrical resource strategy that minimizes the expected cost of, and risks to, the regional power system over the next 20 years. Across multiple scenarios considered in the development of the plan, one conclusion was constant: the most cost-effective and least risky resource for the region is improved efficiency of electricity use. In each of its power plans, the Council has found substantial amounts of conservation to be cheaper and more sustainable than most other types of generation. In this Sixth Power Plan, because of the higher costs of alternative generation sources, rapidly developing technology, and heightened concerns about global climate change, conservation holds an even larger potential for the region. The plan finds enough conservation to be available and cost-effective to meet 85 percent of the region's load growth for the next 20 years. If developed aggressively, this conservation, combined with the region's past successful development of energy efficiency could constitute a resource comparable in size to the Northwest federal hydroelectric system. This efficiency resource will complement and protect the Northwest's heritage of clean and affordable power. Aggressive pursuit of this conservation is the primary focus of the power plan's actions for the next five years. Combined with investments in renewable generation as required by state renewable portfolio standards, improved efficiency will help delay investments in more expensive and less clean forms of electricity until the direction and form of future climate change legislation becomes clearer, and alternative low-carbon energy technologies become cost-effective. At the same time, the region cannot stand still in maintaining and improving the reliability of its power system. Investments to add transmission capability and improve operational agreements are important for the region, both to access growing site-based renewable energy and to better integrate it into the power system. The Council also expects that there are small-scale resources available at the local level in the form of cogeneration or renewable energy opportunities. The plan encourages investment in these resources when cost-effective. The power plan recognizes that meeting capacity needs and providing the flexibility reserves necessary to successfully integrate growing variable generation sources may require near-term investments in generation resources to provide reliable electricity supplies in specific utility balancing areas. In addition, individual utilities have varying degrees of access to electricity markets and varying resource needs. The Council's regional power plan is not necessarily a plan for every individual utility in the region, but is intended to provide guidance to the region on the types of resources that should be considered and their priority of development. The near-term actions recommended in the Council's Sixth Power Plan are important, but the region cannot neglect longer-term needs. The plan encourages research in advanced technologies for the long-term development of the power system. For example, emerging smart-grid technologies could make it possible for consumers to help balance supply and demand. By providing information and tools to consumers to adjust electricity use in response to available supplies and costs, the capacity and flexibility of the power system would be enhanced. Smart-grid development also may facilitate the deployment of plug-in hybrid electric vehicles that work in concert with the power system to improve the use of available generating capacity and help reduce carbon emissions in the transportation sector. In general, these technologies offer the potential to fundamentally change the power system while improving its efficiency and reliability. Developing these technologies is a long-term process that will require many years to reach full potential, but the region can facilitate progress through research, development, and demonstration of the technologies. Along with the smart grid, other technologies may be able to provide power when it is needed with low cost, low risk, and low emissions. In the future, the region may find greater value in power generated by geothermal resources, ocean waves, tides, gasified coal with carbon sequestration, advanced nuclear, or currently unknown technologies. New methods to store electric power, such as pumped storage or advanced battery technologies may enhance the value of existing variable generation like wind. Given the uncertainties of the future, the region should not concentrate on any one potential future solution to its power supply, but should explore a diversity of potential sources of future energy generation and conservation. ## **FUTURE REGIONAL ELECTRICITY NEEDS** The Pacific Northwest is expected to develop and expand over the next 20 years. Regional population is likely to increase from 12.7 million in 2007 to 16.7 million by 2030. This four million increase compares to a 3.8 million increase between 1985 and 2007. The population growth will be focused on older age categories as the baby boom generation reaches retirement age. While the total regional population is projected to increase by over 28 percent, the population over age 65 is expected to nearly double. Such a large shift in the age distribution of the population will change consumption patterns and electricity uses. Some possible effects could include increased health care, more retirement and elder care facilities, more leisure activities and travel, and smaller-sized homes. The cost of energy (natural gas, oil, electricity) is expected to be significantly higher than during the 1980s and 1990s. Although these prices have decreased significantly since the summer of 2008, a significant portion of the reductions are likely due to the effects of the current economic recession. Natural gas prices have also been affected by the recent growth of production from nonconventional natural gas supplies. The technology to retrieve these supplies cost-effectively has only developed recently and has improved expectations of adequate future supplies. Nevertheless, the cost of finding and producing these supplies is higher than for conventional supplies, which increases the estimated future price trend for natural gas. If carbon emissions taxes or cap-and-trade policies are implemented, energy costs are likely to increase. Some of the planning scenarios used to develop this plan include a wide range of possible carbon mitigation costs from zero to \$100 per ton. The expected average prices in this range start at zero and increase over time to \$47 per ton of CO₂ emissions by 2030. Carbon costs can have a significant impact on electricity costs and prices to consumers. While higher prices reduce demand, they also stimulate new sources of supply and efficiency and make more efficiency measures cost-effective. Electricity load (before accounting for new conservation) is expected to grow by about 7,000 average megawatts between 2009 and 2030, growing at about 335 average megawatts, or 1.4 percent, per year. Residential and commercial sector electricity use account for much of the growth in demand. Contributing to the growth in the residential sector is an anticipated increase in air conditioning and consumer electronics. Also, summer peak electricity use is expected to grow more rapidly than annual energy. All of this growth in energy demand must be met by a combination of existing resources, more efficient use of electricity, and new generation. An important change for the Sixth Power Plan is that electricity needs in the future can no longer be adequately addressed by evaluating only average annual energy requirements. In the future, resource needs must also consider capacity to meet peak load and the flexibility to provide within-hour, load-following, and regulation services. The requirements for within-hour flexibility reserves have increased because of the growing amount of variable wind generation located in the region. ### RESOURCE STRATEGY The Council's resource strategy for the Sixth Power Plan provides guidance for the Bonneville Power Administration and the region's utilities on choices that will help meet the region's growing electricity needs while also reducing the risk associated with uncertain future conditions. The strategy minimizes the cost of, and risks to, the future power system. The timing of specific resource acquisitions is not the essence of the strategy because the timing of resource needs will vary for every utility. Rather, the important message of the resource strategy lies in the nature of the resources and their priorities. The resource strategy can be summarized in five specific recommendations: 1. Improved efficiency of electricity use is by far the lowest-cost and lowest-risk resource available to the region. Cost-effective efficiency should be developed aggressively and on a consistent basis for the foreseeable future. The Council's plan demonstrates that cost-effective efficiency improvements could on average meet 85 percent of the region's growth in energy needs over the next 20 years. 2. Renewable resource development is required by resource portfolio standards in three of the four Northwest states. The most readily available and cost-effective renewable resource is wind power and it is being developed rapidly. Wind requires additional strategies to integrate its variable output into the power system and, in addition, it provides little capacity value for the region. The region needs to devote significant effort to expanding the supply of cost-effective renewable resources, many of which may be small scale and local in nature. - 3. Remaining needs for new energy and capacity should be based on natural gas-fired generation until more attractive technologies become available. The resource strategy does not include any additional coal-fired generation to serve the region's needs. Further, the Council's plan demonstrates that meeting the Northwest power system's share of carbon reductions called for in some state, regional, and federal carbon-reduction goals will require reduced reliance on the region's existing coal plants. - 4. The challenges of wind integration and the need for additional within-hour reserves initially should be addressed through improvements in system operating procedures and business practices. Changes in wind forecasting, reserve sharing among control areas, scheduling the system on a shorter time scale, and advancing dynamic scheduling can all help address wind integration and contribute to a more efficient use of existing system flexibility. The region is already making significant progress in these areas. - 5. Finally, the Council's resource strategy calls for efforts to expand long-term resource alternatives. The region should demonstrate the potential of smart-grid applications to improve the operation and reliability of the regional power system and to access the potential of consumers to provide demand response for the capacity and flexibility of the power system. The region should continue to assess new efficiency opportunities, expand the availability of cost-effective renewable energy technologies, and monitor development of carbon capture and sequestration, advanced nuclear technologies, and other low-carbon or no-carbon resources. # **Efficiency** The Council's power plan includes a detailed analysis of efficiency potential in hundreds of applications. The achievable technical potential of efficiency improvements increased from the Fifth Power Plan levels due to advancing technology, reduced cost, and estimates in new areas such as efficiency in electricity distribution systems, consumer electronics, and street, parking, and exterior building lighting. In addition, the cost-effectiveness of these technologies has increased significantly because avoided costs have doubled and carbon-cost risk is several times higher than in the Fifth Power Plan. The estimated achievable potential conservation is nearly 6,000 average megawatts for measures costing under \$100 per megawatt-hour. Over 4,000 average megawatts are available at a cost of less than \$40 per megawatt-hour. These increased opportunities exclude future savings from efficiencies that have already been secured through building codes and appliance efficiency standards. The plan shows that a substantial amount of the growth in electricity demand could be met by conservation. Portfolio model analysis shows that over 5,900 average megawatts of conservation are cost-effective, double the amount in the Council's Fifth Power Plan. The amount that can be achieved is constrained by the commercial availability of technologies, limits on the annual development rate, and an ultimate penetration rate limit of 85 percent. The amount of conservation found to be cost-effective changed very little in response to changing assumptions about carbon costs and policies. Conservation in the plan is projected to be responsible for reducing carbon emissions by 17 million tons per year by 2030, a 30 percent reduction in 2030 emissions. Failure to achieve the conservation included in the plan will increase both the cost of, and risks to, the power system and likely prevent Washington and Oregon from meeting legislated carbon-reduction goals. ## Generation Alternatives The Council analyzed a large number of alternative generating technologies. Each of these technologies is compared in terms of risk characteristics and cost with other generating technologies, efficiency improvements, and demand response. In addition, resource contributions need to be considered in terms of their energy, capacity, and flexibility characteristics. Generating technologies that are technologically mature, meet restrictions on new plant emissions, and are cost-effective are limited in the short to intermediate term. Wind remains the primary large-scale, cost-effective renewable generation source in the near term. However, the Council believes there likely are small-scale dispersed renewable generation alternatives that are local and site-specific. Cost-effective development of these is encouraged, even though the Council currently lacks enough information to include them explicitly in the plan. Natural gasfired generation is also feasible and cost-effective. New coal-fired generation is difficult to site and permit, and prohibited in many states by new plant emissions standards. During the next 20 years, alternatives may develop such as carbon separation and sequestration, maturing renewable technologies, advanced nuclear generation, demand response, smart-grid technologies, and storage strategies to help provide flexibility reserves. When CO2 costs are added to the direct cost of generating alternatives, the cost of most generating resource alternatives range between \$70 and \$105 per megawatt-hour or higher (levelized 2006\$). New renewable generation (primarily wind) is required to meet renewable portfolio standards in Washington, Oregon, and Montana. Analysis shows that meeting RPS requirements uses most of the 5,300 megawatts of readily accessible wind potential in the region. In addition to the wind, some geothermal resources were found to be attractive. However, the amount of geothermal potential is considered quite limited. Given the risk that a carbon-pricing policy might be enacted in the future, some renewable generation is cost-effective even without renewable portfolio standards. Natural gas-fired generation is anticipated toward the middle of the planning period. Natural gas is attractive for energy and capacity needs and provides an ability to displace coal plants in the event of high carbon costs or coal plant closures. Both combined-cycle turbines and simple-cycle turbines are included in most scenarios. Although these natural gas plants are sited and licensed in the plan, this does not occur until after the five-year action plan period. Preparing to add natural gas-fired generation helps protect against the risk of uncertain future conditions, but the generating plants are not actually completed in many of the simulated futures during the 20-year planning period. The Council recognizes that individual utilities' needs and access to market resources vary. Some utilities will need additional resources in the near-term even if they meet their renewable portfolio standards and acquire all conservation available to their service territories. During the last 10 years of the power plan the generating resource priorities become less clear. Given current climate change policies and concerns, new coal without carbon sequestration is unlikely. Further, any significant reduction in carbon will require reduced operations of existing coal plants. Alternatives beyond greater reliance on natural gas are typically unproven commercial technologies or alternatives that require significant new transmission investments. Long-term generating resources considered include wind developed outside the region and imported on new transmission lines, advanced nuclear, gasified coal with carbon sequestration, and development of relatively unproven renewable resources, or ones that are currently too expensive. Natural gas is used in the plan to meet long-term needs, but the Council recognizes that other alternatives are likely to become available over time. In particular, the evolution of smart-grid technologies could significantly change the nature of future power system needs and the kinds of resource alternatives required and available. ### **CLIMATE CHANGE POLICY** Addressing the topic of uncertain climate policies was identified as one of the most important issues for the Sixth Power Plan. The focus of climate policy, especially for the power generation sector, will be on carbon dioxide emissions. Nationwide, carbon dioxide accounts for 85 percent of greenhouse gas emissions. Nationally, about 38 percent of carbon dioxide emissions are emitted from electricity generation, but for the Pacific Northwest the power generation share is only 23 percent because of the hydroelectric system. Analysis by others has shown that substantial and inexpensive reductions in carbon emissions can come from more efficient buildings and vehicles. More expensive reductions can come from substituting non- or reduced-carbon electricity generation such as renewable resources, natural gas, and nuclear generation, or from sequestering carbon. Reductions in carbon emissions can be encouraged through various policy approaches, including regulatory mandates (RPS or emission standards), emissions cap-and-trade systems, emissions taxation, and efficiency improvement programs. State policy responses within the region to climate change concerns have focused on renewable energy standards and new generation emission limits. In addition, Oregon and Washington have carbon reduction targets adopted by statute. National and regional proposals have focused on cap-and-trade systems intended to reduce carbon and other greenhouse gases, although none have been implemented successfully in the region. Although carbon taxes are easier to implement than cap-and-trade systems, policy discussions have focused mainly on cap-and-trade systems. The question for the power plan is what strategies are prudent given a future where carbon pricing policies are unclear. The Council does not take a position on any particular regional carbon reduction goal or carbon price in this power plan. The plan does recognize the uncertainty about future carbon prices and that possible carbon emission reductions are important risk issues for the regional power system. Multiple carbon reduction scenarios, including a carbon risk scenario that considers a range of future carbon prices between zero and \$100 per ton provide relevant information for policy makers in the region. In general, the resource strategy in the plan will allow Washington and Oregon to meet their carbon reduction targets and constructively address the risk of uncertain future carbon policy. According to Council analysis, states and/or the federal government will need to take additional actions in order to achieve these targets. Potential carbon pricing plays an important role in the Council's resource strategy, with the exception of the conservation resource, which remains a key component regardless of climate change policy assumptions. The key findings from the Council's analysis of climate change policies include the following: - Without any carbon control policies, including existing ones, carbon emissions from the Northwest power system would continue to grow to 6 percent over 2005 levels by 2030. However, without the significant amount of conservation (which is cost-effective even without carbon policies) the growth in emissions would be far greater. - Without additional carbon pricing policies, current policies would stabilize carbon emissions from the Northwest power system at 2005 levels, but not meet current carbon reduction goals. - Assuming a risk of higher carbon prices, the Sixth Power Plan resource strategy has the potential to reduce average regional power system carbon emissions to 9 percent below 1990 levels, or 30 percent below 2005 levels, adjusted for normal hydro conditions. - Significant reductions of carbon emissions from the Northwest's power system require reduced reliance on coal, which currently emits more than 85 percent of the carbon dioxide from the regional power system. A carefully coordinated retirement and replacement of half the existing coal-fired generation serving the region with conservation, renewable generation, and lower carbon-emission resources could reduce average carbon emissions to 18 percent below 1990 levels. - To the extent that public policy raises the cost of carbon, we can expect an increase in a typical consumer's electric bill and a decrease in carbon emissions, especially when the carbon price begins to exceed \$40 per ton. A fixed carbon price of \$45 dollars per ton has a similar effect on carbon emissions as retiring half of the existing coal-fired generation. Both would meet current carbon reduction targets for 2020 on average, but coal retirement would provide more certainty in meeting the targets. - Preserving the capability of existing regional hydroelectric generation will help keep power system costs and carbon emissions down. In scenarios where the capability of existing resources are reduced, whether hydroelectric or coal, the energy and capacity are largely replaced with gas-fired generation to maintain the adequacy and reliability of the power system. # CAPACITY, FLEXIBILITY, AND WIND INTEGRATION Reliable operation of a power system requires minute-to-minute matching of electricity generation to varying electricity demand. In the Pacific Northwest, resource planners have been able to focus mostly on annual average energy requirements, leaving the minute-to-minute balancing problem to system operators. This was because, historically, the hydroelectric system had sufficient peaking capacity and flexibility to provide the needed operations as long as there was sufficient energy capability. This is changing for several reasons: growing regional electricity needs are reducing the share of hydroelectricity in total demand, peak load has grown faster than annual energy, the capacity and flexibility of the hydro system has been reduced over time for fish operations, and growing amounts of variable wind generation have added to the balancing requirements of the system. As a result, planners must now consider potential resources in terms of their energy, capacity, and flexibility contributions. The rapid growth of wind generation (which has little capacity value and increases the need for flexibility reserves) means that meeting growing peak load and flexibility reserves will require adding these capabilities to the power system. Changes can be made to the operation of the power and transmission system that will reduce flexibility reserve needs. These operational changes are expected to cost less than adding peaking generation, demand response, or flexibility storage, and they can be implemented more quickly. ## FISH AND WILDLIFE PROGRAM AND THE POWER PLAN The Columbia River Basin Fish and Wildlife Program is by statute incorporated into the Council's power plan. The fish and wildlife program guides Bonneville's efforts to mitigate the adverse effects of the Columbia River hydroelectric system on fish and wildlife. One of the roles of the power plan is to help assure reliable implementation of fish and wildlife hydrosystem operations. The Columbia River power system operators have reliably provided hydrosystem actions specified to benefit fish and wildlife (and Bonneville ratepayers have absorbed the cost of those actions) while maintaining an adequate, efficient, economic, and reliable energy supply. This is so even though the hydroelectric operations for fish and wildlife have a sizeable impact on power generation. On average, hydroelectric generation is reduced by about 1,200 average megawatts, relative to operation without any constraints for fish and wildlife. Since 1980, the power plan and the Bonneville Power Administration have addressed this impact through changes in secondary power sales and purchases, by acquiring conservation and some generating resources, by developing resource adequacy standards, and by implementing other strategies to minimize power system emergencies and events that might compromise fish operations. In addition to operational changes, most of the direct cost and capital costs of fish and wildlife programs have been recovered through Bonneville revenues and Bonneville has absorbed the financial effects of lost generation, resulting in higher electricity prices. Bonneville estimates that the total financial effect of replacing lost hydropower capability and funding direct fish and wildlife program expenditures totals from \$750 million to \$900 million per year (a range affected by, among other things, water conditions and electric prices). The power system is less economical as a result of fish and wildlife program costs, but still economical in a broad affordability sense when compared to the costs of other reliable and available power supplies. The future presents a host of uncertain changes that are sure to pose challenges for the successful integration of power system and fish and wildlife needs. These include possible new fish and wildlife requirements, increasing wind generation and other variable renewable integration needs that could require more flexibility in power system operations, conflicts between climate change policies and fish and wildlife operations, possible changes to the water supply from climate change that might make it more difficult to deliver flows for fish and meet power needs, and possible revisions to Columbia River Treaty operations to match 21st century power, flood control, and fish needs. To address current operations and prepare for these additional challenges, the Council has adopted a regional adequacy standard to help ensure that events like the 2000-01 energy crisis, in which fish operations and power costs were affected, do not happen again. In addition, the Wind Integration Forum is addressing issues with integration of wind into the power system. Large swings in wind output have sometimes adversely affected hydropower and fish operations. Addressing adequacy and flexibility issues in the Sixth Power Plan will improve electricity reliability and help ensure reliable fish operations.