

Integration of Wind Power in the Danish Energy System

Wind Integration Forum July 29th – 30th 2010, Portland

Gitte Agersbæk Senior Engineer Energinet.dk

Agenda

- Wind power in Denmark status and plans
- Wind power in the electricity market
- Wind forecasting
- Efficient integration of wind power
 - Strong international transmission grid
 - Coherent and flexible energy systems
 - Active control SmartGrid
- Conclusions

The Danish electricity system – development and policy

From primary to local generation

Danish energy policy:

Long-term vision:

Fossil-fuel independent

Energy agreement 2008-2011 (2008):

1.300 MW of new wind-power capacity ~ +40%!

EU 20-20-20 target – 30% renewables:

Power system may have to handle 50% wind power!

Integration of Wind Power in the Danish Energy System import / export [MW]

Wind power in Denmark 1988-2012

Wind power balanced in a large market area

- Strong transmission grids and interconnectors
- Coherent electricity markets

Wind power balanced in a flexible generation system

- Coal fired power plants:
 - Required to operate down to 35% of rated power
 - Some are capable to operate down to 10%
- Combined heat and power plants:
 - Heat accumulators decouple electricity and heat demand
 - Electric boilers give flexible demand
- Wind farms:
 - Grid codes ensure capability to regulate

Wind power can contribute to system balancing!

The phases of the power market

The regulation market (real time market)

- Energinet.dk is part of a common Nordic regulating power market which operates along the same fundamental principles as the spot market.
- Regulating power bids are collected from all Nordic countries and listed in price order (NOIS = Nordic Operational Information System).
- Bids are activated in accordance with the price list (cheapest first) and the marginal bid in one hour determines the price for all suppliers
- To secure a minimum volume in the regulating market Energinet.dk buys reserve capacity.

Prices in the regulating market

Western Denmark: January 2003 – December 2007

Wind power in the electricity market

- Wind power can be integrated in a liberalized electricity market
- Wind power has marginal costs of almost zero, and will therefore always get its bids accepted in the spot market
- The fixed feed-in tariffs for existing wind turbines are decreased over time to market price + a subsidy
- Newly build wind turbines will get market price + a subsidy
- In Denmark, the consumers pay the subsidies to the wind power producers
- The redistribution of money from the consumers to the wind power producers is handled by Energinet.dk

Wind power forecasting

We use two forecasting tools – one external and one internal

- External forecast:
 - Current provider: energy & meteo systems GmbH
 - Combined forecast based on 4 meteorological prognoses.
 - 0-48 hour forecast
 - Hourly deliverance
- Internal forecast:
 - combined forecast based on 3 meteorological prognoses.
 - day ahead (12-36 hour) and short term (0-6 hour) forecast

We are constantly looking for new competitive forecast providers

Internal forecast

- Wind speed
- Production data
- Installed capacity
- UTM coordinates
- Telemetric data

Challenges

 Having 3,2 GW wind power installed in the system, a change of 1 m/s in wind speed can result in a change of 450 MW power production.

 The meteorological forecasts rarely agree on the same wind speed.
Thus we constantly look for the best combination.

Challenges

 A weather front passing the country 30 min late can easily mean a lack of several 100 MW.

 Off shore production can result in very steep production ramps.

Main challenges for the Danish electricity system

50% wind power in a "traditional" electricity system!

- System balanced through:
 - . import/export
 - regulating available generators
 - stopping wind power

- Wind power stopped 1.000 hours/year
- 22% of marginal wind power wasted
- Market value of wind power reduced to 72% of remaining Danish electricity generation

Preparing for 50% Wind Power

Efficient integration of wind power through:

- A strong international transmission grid
- Coherent and flexible market based energy systems
- Active control SmartGrids

A strong international transmission grid

• Wind power balanced in a larger area

 mutual support from geographically dispersed wind power

Diversities between systems utilized

 e.g. synergy between wind and hydro power

Robustness increases operational security

secure handling of changing energy transports

Coherent and flexible energy systems

Market based mobilisation of all flexible resources

flexible generation and inflexible demand \rightarrow fluctuating generation and flexible demand

Active control of distributed resources - SmartGrids

Demonstration on Bornholm

Conclusions

Efficient integration of large-scale wind power through:

A strong international transmission grid

• to trade and balance in a wide geographical area

Efficient international electricity markets

• with clear price signals and trading close to real-time

Coherent energy systems

 to increase flexibility and economic efficiency and reduce environmental impact – electricity, heat and transportation

• High flexibility in generation and demand

• with technical connection requirements for all resources – Grid Codes

• A revised power system control architecture

• for active control of distributed resources - SmartGrids

Extra slides

The power system right now

July 29th - 30th 2010

Long term planning – available sites for 4.6 GW

Share of installed wind power 10 DK1 9 8 7 MAE (%) 6 B 5 **ENDKWP** 4 3 E E 2 1 0 ENDKWP ENDKAT В С D Α 25 DK2 20 (%) **15** 10 **F ENDKAT ENDKWP** ∎ G 5 0 **ENDKWP** ENDKAT G н F

Wind Power Forecast Performance per PBR

ENERGINET DK

The intraday market

- Continuous power trading up to one hour prior to delivery
- Bid types: hourly bids (MWh/h) and block bids
- Transmission capacity allocated according to "first-come-first-served"
- In the Nordic area Nord Pool's Elbas has monopoly

Effektiv anvendelse af vindkraftbaseret el i Danmark

ENERGINET

Electric cars – simple or intelligent charging

Effektiv anvendelse af vindkraftbaseret el i Danmark ENERGINET **Efficient use of Wind Power in Denmark** Our main conclusions – key figures on EU's 2020 targets: RE share of CO₂ emissions RE share of Energy efficiency total energy in sectors not transport consumption subject to emission allowances Million tonnes/year Target for +13-7.5 +10%-20% Denmark, see the percentage EU 2020 targets poi - 40 % - 40 % - 40 % 35 % -3 -7% Heat pumps and +4%+5 percensage electric vehicles points 2020