Rooftop Solar Photovoltaic
Seventh Plan Approach to Analysis
CRAC November 13, 2014

Outline

- Approach for Seventh Plan
- Background
- Initial Findings
- Issues for CRAC Feedback
Why Solar PV at Conservation Advisory Committee?

- A “direct-application” renewable resource under the Regional Act
 - But does not get 10% Act Credit
- Largely a consumer-side resource
- Reduces load on the grid like EE
- Somebody needs to do it

Issues for CRAC

- Is the approach appropriate?
- Forecast cost decline
- Total potential available: Max number installs
- Baseline adoption rate into load forecast
- Is three geographic areas sufficient?
- Ramp Rate: How fast could it be installed?
- How to estimate net back to grid
Approach for Seventh Plan

1) Estimate Rooftop Solar PV System Cost
2) Forecast Changes in Cost & Performance
3) Estimate Total Resource Potential
4) Forecast Status Quo Adoption Rate
5) Status Quo Adoption of PV Reduces Load Forecast
6) Remaining Potential Made Available to RPM
7) Vet Assumptions with Advisory Committees

By 2012 over 10,000 Utility Customers Installed 66 MW of PV Capacity (MW) Selling back about 1 aMW of Power

<table>
<thead>
<tr>
<th>Region</th>
<th>Net Metering Customer Count</th>
<th>Capacity Installed (MW)</th>
<th>MWh of Power Sold back to utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho</td>
<td>349</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Montana</td>
<td>1,010</td>
<td>4</td>
<td>122</td>
</tr>
<tr>
<td>Oregon*</td>
<td>6,269</td>
<td>43</td>
<td>8,687</td>
</tr>
<tr>
<td>Washington</td>
<td>3,222</td>
<td>17</td>
<td>932</td>
</tr>
<tr>
<td>Region</td>
<td>10,850</td>
<td>66</td>
<td>9,742</td>
</tr>
</tbody>
</table>

Source: EIA 861 annual Utility Net metering data

*OPUC’s reports that by 2013 about 8000 customers in Oregon are on net-metering.
Installed Cost Falling
Energy Trust of Oregon Program Data

Commercial Costs Lower than Residential

- Residential costs drop 20% since 2012
- Commercial costs drop by one-third since 2012
Average Residential Size Going Up
(Energy Trust of Oregon Data)

- 2012 = 4.2 kW
- 2014 = 5.3 kW

Cost & Savings Inputs
(In 2012$ for a 2014 Install)

<table>
<thead>
<tr>
<th>Element</th>
<th>Value(s)</th>
<th>Source/Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost ($/Watt DC)</td>
<td>$4.5 Res, $3.8 Com</td>
<td>ETO 2014 cost</td>
</tr>
<tr>
<td>Annual O&M ($/Watt DC)</td>
<td>$0.032 Res, $0.024 Com</td>
<td>NREL</td>
</tr>
<tr>
<td>Inverter Replacement</td>
<td>10-Yr Res, 15-Year Com</td>
<td>NREL</td>
</tr>
<tr>
<td>Typical System Size</td>
<td>5.3 kW Res, 35 kW Com</td>
<td>ETO 2012-2014</td>
</tr>
<tr>
<td>Life</td>
<td>25 Years</td>
<td>NREL</td>
</tr>
<tr>
<td>Program Admin Cost</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>System Integration</td>
<td>$1.07/MWh</td>
<td>BPA Tariff</td>
</tr>
<tr>
<td>Locations</td>
<td>Seattle, Portland, Boise</td>
<td></td>
</tr>
<tr>
<td>Production & CF & Shape</td>
<td>PV Watts</td>
<td></td>
</tr>
</tbody>
</table>
Proposed Cost Declines Based on Utility Scale Cost Curve ~33% by Reduction 2025

Utility Scale Solar PV Capital Cost Estimate - $/kWac

Example Cost of Rooftop PV Energy Levelized Cost $/MWh (2012$)

<table>
<thead>
<tr>
<th></th>
<th>Cost in 2014</th>
<th>Cost in 2025</th>
<th>Cost in 2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boise (Residential)</td>
<td>$200</td>
<td>$140</td>
<td>$130</td>
</tr>
<tr>
<td>Boise (Commercial)</td>
<td>$160</td>
<td>$110</td>
<td>$100</td>
</tr>
<tr>
<td>Portland (Residential)</td>
<td>$260</td>
<td>$180</td>
<td>$170</td>
</tr>
<tr>
<td>Portland (Commercial)</td>
<td>$210</td>
<td>$140</td>
<td>$130</td>
</tr>
</tbody>
</table>

- Levelized Cost per MWh (2012$)
- 25-Year Life
- 4% Discount Rate
- 5.3 kW System
- No Regional Act Credit
- No Federal Tax Credit
- O&M Cost & Inverter Replacement & Integration
- No Program Admin Costs
Total Potential Available

<table>
<thead>
<tr>
<th>Sector</th>
<th>High (aMW)</th>
<th>Low (aMW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>2500</td>
<td>1500</td>
</tr>
<tr>
<td>Commercial</td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>Total</td>
<td>4500</td>
<td>2500</td>
</tr>
</tbody>
</table>

- **Two Methods Used**
 - Roof Area * Suitable Roof * kW/SF collector
 - Buildings * Suitability * Typical kW/Building

- **Sources:**
 - CBSA, RBSA, Solar Studies
 - Council forecast of residential & commercial stock

NREL Solar Calculator Used to Shape Energy & Peak Impacts

Boise Energy & Peak Contribution

- Monthly Energy (kWh)
- Watts at System Peak (6PM) by Month
Forecast Long-Term Adoption (Business as Usual Case)

- Council’s long-term load forecast model estimates continued consumer PV adoption rates
- Estimated for all sectors
 - Historical PV adoption trends (1985-2012)
 - Forecast retail power rates
 - Solar PV costs & performance
 - Both energy and peak impacts
- Forecast load reduced by forecast adoption of PV
 - Initial estimates: Consumer side-PV generation supplies 0.5-2.0% of regional electric load by 2035

Preliminary Projection Consumer Uptake Rooftop Solar PV Energy (GWh)

- Average Annual Growth Rate 2015-2035 ~ 5%
- Generation: ~ 230 aMW by 2035
- Roughly ~ 1.2% of total load
- Roughly 5% - 10% of potential
Preliminary Projection Consumer Uptake Rooftop Solar PV Peak

MW of July Peak Reduction

- Residential
- Commercial
- Industrial

Solar PV Not Adopted in Forecast Model Remains As Resource Option

<table>
<thead>
<tr>
<th></th>
<th>In Service 2014</th>
<th>In Service 2024</th>
<th>In Service 2034</th>
<th>Sixth Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Energy Available aMW</td>
<td></td>
<td></td>
<td>2500 – 4500 minus ~ 200</td>
<td>250</td>
</tr>
<tr>
<td>Cost per MWh</td>
<td>$160 - $260</td>
<td>$110 - $180</td>
<td>$100 - $170</td>
<td>> $200</td>
</tr>
<tr>
<td>Program Ramp Rate</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Estimated Production 2012 < 10 aMW
What Max Pace of Development?

Summary:
Approach for Seventh Plan

1) Estimate Roof top Solar PV System Cost
 - Use recent cost data from Energy Trust of Oregon
 - By solar zone, residential & commercial applications

2) Forecast Changes in Cost & Performance
 - Use same cost curve decline as utility scale
 - Apply to rooftop prices

3) Estimate Total Resource Potential
 - Number of homes & businesses & roof area
 - Fraction applicable (adjust for orientation & shading)

4) Subtract market adoption
 - Long-term forecast model based on historical adoption

5) Apply maximum annual availability
 - Propose retrofit in 20 years

6) Add remaining potential as Distributed Generation option
Summarize CRAC Perspective

- Is the approach appropriate?
- Forecast cost decline
- Total potential available: Max number installs
- Baseline adoption rate into load forecast
- Is three geographic areas sufficient?
- Ramp Rate: How fast could it be installed?
- How to estimate net back to grid

End
Extra Slides

Background Solar PV

- It's a global market
- Modest consumer uptake in PNW
- Recent uptick in PNW adoption
- Solar PV costs falling
- Other trends: Ownership & financing
Typical Installed Cost

- Residential: $20,000 - $25,000 (4-5 kW)
- Commercial: $50,000-$200,000 (10-40 kW)
- Largest: $22 million (5.7 MW)

- Incentives typically cut consumer costs in half
- Third-Party leased projects at no initial customer cost
- Provide 40-50% of residential electric needs

What’s Happening in Programs?
Energy Trust of Oregon Program 2012-2014

- ETO Incentives for Residential
 - PGE: $0.95/Watt, up to $9500
 - PacifiCorp: $0.70/Watt, up to $7000
 - Cash or Loan, or
 - Third-Party Leasing, fixed-term lease payment
- Plus State Tax Credit
 - Up to $6000 per residence
- Plus Federal Tax Credit
 - 30% of cost through 2016
Energy Trust Oregon 2012-2014
Total Installed Capacity 30 MW

- Residential: About 4 MW per year
- Commercial: About 1-2 MW per year
- Utility Scale: Occasional large projects
- Over 6000 systems installed since 2003, total 58 MW
- 20MW Residential, 22MW Commercial, 16 MW Utility Scale

Solar Growth Not Uniform Across States
2012 Roof-top Solar Power Production (Trillion Btu)

Top 5 states represent over 75% of generation

Source: EIA SEDS 2012 – includes solar thermal
A World Market

Evolution of global annual installations 2000-2013 (MW)

Source: European Photovoltaic Industry Association, Global Market Outlook 2014-2018

PNW Regional Energy Production by Rooftop Solar (Trillion Btu)

Source EIA : State Energy Data System

Average Annual Growth Rate

<table>
<thead>
<tr>
<th>Year Range</th>
<th>Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989-2005</td>
<td>3%</td>
</tr>
<tr>
<td>2005-2012</td>
<td>21%</td>
</tr>
</tbody>
</table>

11/10/2014
Emerging Ownership & Financing Options

Consumer interest in solar PV has generated new approaches, financing & ownership arrangements
- Community Solar
- Special Purpose Entities
- Solar-Specific Banks
- Lease Options
- Utility-Sponsored Models
- Bulk Purchasing
Location Matters:
More Sun Means More Energy Produced

Annual kWh Generated for a 5.3 kW Residential System

Estimating Potential Applications

- Most homes have some solar access
- Panels do not have to be on buildings