Developing a broader scientific foundation for river restoration: Columbia River food webs

Robert J. Naiman1,2, J. Richard Alldredge1, David A. Beauchamp2, Peter A. Bisson6, James Congleton1, Charles J. Henny9, Nancy Huntly1, Roland Lamberson1, Colin Levings1,6, Erik N. Merrill1, William G. Peary1, Bruce E. Rieman1,2, Gregory T. Ruggerone5, Dennis Scarnecchia2, Peter E. Smouse5, and Chris C. Wood4

1School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195; 2Centre of Excellence in Natural Resource Management, University of Western Australia, Albany WA 6330, Australia; 3Department of Statistics, Washington State University, Pullman, WA 99164-3144; 4US Geological Survey, Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195; 5US Department of Agriculture Forest Service, Pacific Northwest Research Station, Olympia, WA 98512; 6US Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, Moscow, ID 83843; 7US Geological Survey (Emeritus), Forest and Rangeland Ecosystem Science Center, Corvallis, OR 97331; 8Ecology Center and Department of Biology, Utah State University, Logan, UT 84322; 9Department of Mathematics, Humboldt State University, Arcata, CA 95521; 10Fisheries and Oceans Canada (Scientist Emeritus), Centre for Aquaculture and Environmental Research, West Vancouver, BC, Canada V7V 1N6; 11University of British Columbia (Adjunct Faculty), Institute for Resources, Environment and Sustainability, Vancouver, BC, Canada V6T 1Z4; 12Northwest Power and Conservation Council, Portland, OR 97204; 13Oregon State University, College of Oceanic and Atmospheric Sciences, Corvallis, OR 97331; 14US Department of Agriculture Forest Service, Rocky Mountain Research Station, Seeley Lake, MT 59868; 15Natural Resources Consultants, Seattle, WA 98199; 16Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844; 17Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901; and 18Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada V9T 6N7

Well-functioning food webs are fundamental for sustaining rivers as ecosystems and maintaining associated aquatic and terrestrial communities. The current emphasis on restoring habitat structure—without explicitly considering food webs—has been less successful than hoped in terms of enhancing the status of targeted species and often overlooks important constraints on ecologically effective restoration. We identify three priority food web-related issues that potentially impede successful river restoration: uncertainty about habitat carrying capacity, proliferation of chemicals and contaminants, and emergence of hybrid food webs containing a mixture of native and invasive species. Additionally, there is the need to place these food web considerations in a broad temporal and spatial framework by understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments. As an illustration, we discuss how the Columbia River Basin, site of one of the largest aquatic/riparian restoration programs in the United States, would benefit from implementing a food web perspective. A food web perspective for the Columbia River would complement ongoing approaches and enhance the ability to meet the vision and legal obligations of the US Endangered Species Act, the Northwest Power Act (Fish and Wildlife Program), and federal treaties with Northwest Indian Tribes while meeting fundamental needs for improved river management.

Recent years have seen substantial expenditures and sustained efforts by government agencies, indigenous people, and non-governmental organizations to restore rivers and their declining fish stocks. These activities are under increased scrutiny to show that goals and objectives are being met (1, 2). In general, past river restoration has focused on recreating structural attributes (e.g., channel width, complexity) based on the assumption that associated ecological functions will follow (3–6). However, contemporary evidence suggests that ecosystem structure alone does not necessarily reflect how it functions in supporting life. For example, field experiments in the US Pacific Northwest have shown that trophic manipulations (e.g., nutrient additions or salmon carcass introductions) that boost the abundance of potential prey organisms also boost subsequent fish growth (7–10). In contrast, restoration of physical habitats by creating pools or adding structures yields ambiguous evidence that such efforts increase subsequent fish abundance and biomass (11–17). Although it may be premature to conclude from these studies that food availability and species interactions are more limiting to fish than the quality or quantity of the physical habitat, evidence is mounting that many habitat restoration activities are not always as effective in meeting stated goals and objectives as originally anticipated.

Nationwide, river restoration practices tend to target the effects of dams, flow manipulation, and channel structure. More than $1 billion/year has been spent since 1990 on river restoration in the United States, with limited evidence of success (1). It has been argued that successful restoration should focus on restoring processes that support ecosystem services and monitoring how processes respond within an adaptive management framework (3, 18, 19). We suggest here that a balance between adaptive structure and stability to food webs (SI Text, section 1). Each food web component, whether a primary producer, an external input of organic matter, a microbial decomposer, or a secondary consumer, responds to changes in environmental conditions. Furthermore, when a predator impacts its prey, the influence can reverberate through the entire food web as a “cascading trophic interaction” (20, 21). Connectivity across the entire river network also allows organisms, such as fish, to link subfoodwebs, thereby imparting an adaptive structure and stability to food webs (22, 23).

Despite their complexity and limited general application, food webs have been...
used in successful restoration efforts (7, 24, 25) and manipulated at large scales to improve water conditions and recreational fisheries (20, 26, 27). At the same time, ill- advised manipulations have resulted in serious environmental problems [the introduction of opossum shrimp (Mysid dilatans) into freshwater lakes being a particularly pernicious example (28)]. Food webs are often considered to depend on habitat, but habitat alone does not determine the food web; many other factors shape its internal organization, linkages, productivity, and resilience. Species diversity, mix of native and nonnative species, chemical contaminants, phenologies and seasonal production cycles, carrying capacity, disturbance, nutrient delivery and cycling, competition, predation, disease, and other processes all shape food webs (29). Management actions affecting any one of these components often cascade through food webs to influence community and ecosystem characteristics.

A food web perspective can reveal insights into basic properties underpinning productivity and resilience that cannot be obtained from an exclusive focus on hydrosystem, habitat, hatcheries, and harvest (referred to as the four Hs—the cornerstones of the Columbia River and many other river restoration programs. Restoration activities traditionally focus on flows and physical habitat, and assume that local habitat structure, quality, and amount dictate fish production (3, 4, 5, 18, 19). Traditional freshwater food web illustrations have typically conveyed the notion that most fish food is produced within the local aquatic habitat. In reality, much food is obtained from external or very distant sources—including subsidies from marine systems borne by returning anadromous fishes, headwater tributaries that transport prey downstream, adjacent riparian and floodplain habitats (30, 31), and disturbance that can influence the flux of nutrients and other materials (32, 33) (SI Text, section 2).

Setting

We use the Columbia River to illustrate the importance of food webs in restoration. Examining the Columbia River restoration program, in light of river restoration in general, provides insights into factors underpinning successful activities (e.g., improved survival at dams for juvenile salmonids) (34) as well as less successful efforts (35). The Northwest Power and Conservation Council (NPCC) Fish and Wildlife Program for the Columbia River seeks to establish and maintain an ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife (36). From 2009 to 2011, the Independent Scientific Advisory Board, a committee of scientists reporting to the NPCC, National Oceanic and Atmospheric Administration, and the Columbia Basin Tribes, conducted an extensive review of information on riverine food webs in light of ongoing restoration activities, and made recommendations to refocus some research and restoration actions. The process involved evaluating over 1,000 peer-reviewed published and unpublished reports, conducting public briefings, and receiving correspondence from 40 government agencies, tribal biologists, university researchers, and private sector scientists (29). The Columbia River serves as the illustrative example for which we synthesize our conclusions and recommendations, but the problems and potential solutions are applicable to river restoration in general. Recognizing that restoration goals often represent political, cultural, and societal choices, not just scientific decisions, the US Endangered Species Act mandates the ecological restoration of federally listed fish. The NPCC Fish and Wildlife Program plays a central role in the restoration effort (SI Text, section 3).

Today’s Columbia River ecosystem, including the estuary and uplands, represents a vestige of the historical ecosystem (37). Dam construction, water storage and withdrawals for irrigation, flood control, changing land uses and climate (38, 39), and introduction and expansion of numerous nonnative species (40) have resulted in significant landscape-scale modifications of the river and its tributaries. In particular, the relatively recent and widespread construction of water impoundments throughout the Basin (Fig. L4) has attenuated peak springtime river flows, which historically aided migrations of juvenile salmon and transported large quantities of sediments, nutrients, cold water, and associated materials downstream. Collectively, these alterations have fundamentally altered food web structures and processes in tributaries, the mainstem river, the estuary, and coastal marine environments. The net result is that many populations of once abundant salmon and other fishes have sharply declined and are now listed as endangered or threatened under federal laws, resulting in legal obligations to protect critical habitat [Endangered Species Act 16 USC §§ 1531–1544; ESA §3 (6) defines critical habitat for a threatened or endangered species] (SI Text, section 4).

Current Columbia River restoration activities are diverse, but a high priority is placed on habitat restoration, and its dominance is reflected in the Program’s expenditures. [The Program states (p. 7):

This is a habitat-based Program. The Program aims to rebuild healthy, naturally producing fish and wildlife populations by protecting, mitigating, and restoring habitats and the biological systems within them. Artificial production and other non-natural interventions should be consistent with this effort and avoid adverse impacts to native fish and wildlife species.

Much of the species- and habitat-centric focus can be attributed to the Endangered Species Act and federal treaty obligations with numerous Northwest Indian Tribes. They are an important part of the political landscape and likely to remain so. About 40% of the ~$311 million spent annually goes to acquiring, restoring, and monitoring habitat, removing passage barriers, providing diversion screens for migrating fish, assisting with riparian habitat protection, improving water quality (temperature and sediments), and conducting transactions and conservation activities to maintain ecologically desirable instream flows and other actions aimed at reestablishing more natural habitat processes (41). A relatively small portion of the budget is focused on removing, relocating, or controlling native and nonnative predators, a key element of food webs that is likely to affect interactions within communities.

Although these efforts are viewed as beneficial, none explicitly addresses protection or restoration of food webs. Food webs are integral to the four Hs, because they provide the fuel and direct the flow of energy and material for both productivity and resilience over the long term. In the past, a traditional threat analysis approach has been used to relate habitat, hatcheries, harvest, and hydropower operations to salmon (42, 43). Within that context, size-dependent survival, density-dependent growth, and dependence of growth on the interplay between temperature and food availability as well as other important life history parameters could be viewed as consequences of trophic processes. Habitat and food web approaches are compatible, and if better integrated, they could improve restoration effectiveness and possibly avoid unanticipated consequences of management actions for target species, such as habitat actions that inadvertently facilitate invasion by nonnative predators or competitors and cause unanticipated, often destructive and unwanted, changes in food webs (28, 44, 45). Despite the long history of research on the Columbia River and many thousands of restoration actions, there is still little information on how food webs (Fig. 2) and their processes underpin restoration (SI Text, section 5).

Priority Issues for Riverine Ecosystems

In our review, three critical issues—carrying capacity, chemical contaminants, and hybrid food webs—were consistently
identified as having high priority for research, management, and river restoration programs. River restoration programs could be greatly improved by incorporating food web considerations into the four Hs to better understand and address these three critical issues. Incorporating food web considerations into project implementation could be especially important in determining whether sufficient foods and suitable thermal conditions are available to support adequate growth and bioenergetics in juvenile salmonids, whether pesticides and other chemicals are impacting food supplies as well as reducing the ability of organisms to adequately function (e.g., altered behaviors, slower growth, increased disease susceptibility), and whether nonnative species or hatchery fish are competing for prey with native fishes. These three issues are rarely addressed, and they represent potentially huge problems for the recovery of federally listed species that could easily derail the success of many habitat, harvest, and hatchery programs.

Uncertainty About the Carrying Capacity of Rivers. There is little understanding of the carrying capacity of altered or natural habitats for aquatic organisms (46). We define carrying capacity as the maximum abundance or biomass of species of concern that can achieve adequate somatic growth needed to support population growth given the accessible quantity and quality of food available through time. Managers and biologists in the Columbia Basin have rarely considered this limitation, although it may seriously constrain the success of their programs (e.g., survival of large numbers of stocked fish).

It simply is not clear whether the Columbia River, or any other river, can provide sufficient food to support large populations of artificially raised fishes and other organisms for the long term. Consider the massive annual releases of juvenile fish from Columbia River hatcheries and how they potentially affect food webs and stocks of wild fish (Fig. 1B). There are ~130–150 million hatchery salmon and steelhead added to the river annually from >200 hatcheries at a cost of >$50 million (29, 41, 47). The food used to raise them (most originating from outside the Basin) as well as the thousands of metric tons of natural foods required to sustain them in the river certainly affect the capacity of the Columbia River to

Fig. 1. In addition to the construction of major dams, the Columbia River Basin has undergone substantial transformations in many other ways. Examples include (A) blocking of anadromous fish passage over large areas (StreamNet), (B) substantial releases (annual average of 2006–2012) of hatchery-raised fish (Fish Passage Center, Portland, OR), (C) widespread application of pesticides (246 compounds evaluated; average of 1999–2004) and construction of wastewater treatment plants, and (D) establishment of numerous nonnative aquatic species (note that the number and distribution of nonnative riparian species are not known). White areas, outside Columbia River Basin.
Food web structure in the Hanford Reach of the Columbia River (considered a relatively well-known site). The weak food web resolution illustrates the lack of fundamental knowledge. Note the prevalence of nonnative species. The depicted food web is only a rudimentary subset of the actual web, despite being a well-studied site; there is little empirical understanding of the diversity of food web elements and critical linkages. The basal nodes of the food web—terrestrial plants, periphyton, detrital-associated organisms, aquatic insects, and zooplankton—are aggregates of a huge diversity of organisms; in contrast, the higher nodes are usually composed of single species. Red, primary producers; orange, primary consumers; yellow, secondary consumers; green, tertiary consumers (created in Network3D; RJ Williams, 2010, Network3D Software; Microsoft). *Taxonomic groups containing some nonnative species. **Nonnative species.

Fig. 2.

Nonnative species

* Some non-native species

support naturally produced native fishes. Evidence suggests that nearly two times as many salmon smolts (mostly hatchery fish) are produced in the Columbia Basin today as were present during the period before major hatchery and mainstem dam construction (29). Furthermore, nonnative American shad (Alosa sapidissima) (Fig. 3) have greatly increased since the mainstem dams were built, and they are potentially competing subyearling Chinook (Oncorhynchus tshawytscha) smolts (29, 40). Bioenergetic modeling suggests that the greatest potential spatial and dietary overlap of shad with age 0 Chinook is in July, when both species feed primarily on Daphnia. Depending on the consumption demand during warm and cool years, an estimated 14–16 mt Daphnia are consumed for every 1 million Chinook smolts (29, 40). An estimated 2.4–4.0 mt of Daphnia consumed for every 1 million larval–juvenile shad present during July in John Day reservoir, one of the primary spawning sites of adult shad. Although accurate estimates are not available for the abundance of larval–juvenile shad, there are orders of magnitude more shad than subyearling Chinook feeding in the reservoir. Consequently, the total consumption demand for Daphnia by the shad population exceeds the consumption by Chinook by a considerable but currently unknown amount during the final month of premigration growth. There are also another 85 nonnative fish species and a poorly inventoried suite of nonnative plants and invertebrates in the Columbia River (48, 49) that impact the food supply in unknown ways. The lack of routine monitoring of key food organisms like Daphnia precludes the ability to compare temporal food supply with consumption demand by the major consumers. Consequently, understanding of the carrying capacity of specific habitats and how the carrying capacity for salmonids might change in response to variability in climate, hatchery practices, or populations of consumers or prey is still quite limited.

We believe that there is a fundamental need to consider sustainable food web structures and carrying capacity for broad habitat types in catchments (e.g., tributaries, mainstem rivers, lakes, reservoirs, estuary, and wetlands). For each habitat type, including healthy and degraded examples, a blueprint for what to protect and what to restore for maintaining carrying capacity is paramount. Establishing reasonable and measurable carrying capacity targets for key species allows one to gauge ongoing success in preservation and reclamation efforts. In addition to abundance estimates or counts already recorded at dams, migrant traps, and hatchery releases, other measurable metrics might include relationships among thermal regimes, size (length and weight) or condition of smolts and other juvenile stages to stage-specific survival rates or adult returns, and temporal trends in diets or stable isotopes as a reflection of food sources.

Some of this information is already being collected, but general access to data remains problematic. There are ongoing efforts to improve data availability and sharing through emerging monitoring programs (e.g., Fish Passage Center: www.fpc.org; Data Access in Real Time: www.chr.washington.edu/dart; Pacific Northwest Aquatic Monitoring Partnership; www.pnamp.org), but ongoing effort is needed to collect and report food web-relevant information. For example, access to these data is essential for determining the relationship between carrying capacity and performance and resilience of specific stocks and monitoring the food demands of wild and artificially propagated native and non-native fishes.
The bioenergetics modeling simulations are based on empirical inputs for the average initial and final weights measured over the simulation period, estimated diet composition, thermal experience, and energy density of major prey in the diet.

The simulations indicated that, to grow from the observed 15.0 g at Lower Granite Dam on May 5 to 18.2 g at Bonneville Dam on May 19, yearling Chinook needed to feed at 78% of their theoretical physiological maximum consumption rate given the diet composition and thermal regime experienced during migration. Over that period, individuals consumed an estimated 23.1 g food, with a growth efficiency (grams of growth per grams of food consumed × 100) of 14%. Assuming 64% survival between Lower Granite and Bonneville dams (e.g., 80% survival from Lower Granite to McNary and 80% survival from McNary to Bonneville; approximated from figure 25 and table 35 in ref. 50), for every million yearling Chinook passing Lower Granite Dam, 18.5 mt of prey would have been consumed over the 13-d migration. This consumption demand was composed of 3.7 mt diterpants, 5.8 mt other insects, 4.3 mt Daphnia, and 4.7 mt amphipods (many nonnative). Given the population abundance index of 9 million hatchery and wild yearling Chinook at Lower Granite Dam during 2008 (ref. 50, tables 16–18), the total consumption demand by yearling Chinook passing Lower Granite Dam would have been 166.5 mt prey consumed over the 13–14-d migration, comprising 33.3 mt diterpants, 52.1 mt other insects, 38.8 mt Daphnia, and 42.2 mt amphipods (SI Text, section 6).

Proliferation of Chemicals and Contaminants. Although there is widespread and abundant use of synthetic chemicals in nearly all river basins (SI Text, section 7), data on use of artificial chemicals in the Columbia Basin provide ample cause for concern. The most recent tally of pesticide use (average for 1999–2004) lists 182 chemicals, with an aggregate application rate of ~46,000 mt active ingredients annually; these chemicals are concentrated mostly in agricultural lands along water courses (Fig. 1C). In addition, there are a variety of manufactured and natural organic compounds, such as pharmaceuticals, steroids, surfactants, flame retardants, fragrances, and plasticizers detected, especially in waters in the vicinity of municipal wastewater discharges and livestock agricultural facilities (SI Text).

There is an urgent need to quantify and map the spatial patterns of these chemicals, assess their transfer and accumulation rates, and document the vulnerabilities of food webs to them. Additional investigations on the ecotoxic potential of their mixtures on food webs are also required (51, 52). Bioaccumulation and biomagnification of chemical contaminants affect species that are critical components of the food web (e.g., microbes, sensitive invertebrates, and top consumers), herbicides can cause direct loss of food sources such as aquatic plants and algae (leading to food shortages for higher trophic levels), and exotic chemicals can reduce the ability of species and individuals to cope with normal predation risk and environmental stresses (because of altered behaviors, slower somatic growth, and increased disease susceptibility) (29). If the basal layers of food webs are being depleted by the rapidly expanding presence of contaminants (53, 54), it could negate many ongoing restoration efforts. Furthermore, fish migrating from the oceans to freshwater transport persistent industrial pollutants acquired at sea. The net balance between positive feedback of marine-derived nutrient additions from spawning adults (55) and negative feedback of pollutant delivery from the ocean is unclear and needs careful documentation (56).

Recognizing Hybrid Food Webs and Maintaining Productivity. The continuing introduction and proliferation of nonnative species and their still poorly understood impacts on the native biota heighten the need to manage what have been termed novel, hybrid, or non-analogue food webs (the terms novel, hybrid, and no-analogue are used synonymously here) for which we have no historical precedent (57). Rather than focus on restoring pristine food webs, it would be prudent to identify and maintain the most productive and resilient food webs (i.e., those food webs with the capacity to buffer and recover from mild perturbations). Food webs containing both new and old biotic elements can collectively retain function, productivity, and resilience (58). Attempts to return to pristine food webs often involve use of herbicides, pesticides, or other control measures that can have unintended effects. Contemporary rivers often contain a diverse assemblage of fishes and other species, and resilience does not imply that each species should be abundant at all times. The biological portfolio is dynamic, with species waxing and waning according to environmental conditions.

About 1,000 nonnative species of plants and animals, of which 326 are documented aquatic species (Fig. 1D), inhabit the Columbia Basin. Many others are expected to invade and be transported to the Basin (48, 49). Agencies have dramatically increased prevention measures against invasions by zebra and quagga mussels (Dreissena polymorpha and D. bugensis) into the Basin through border inspection, cleaning stations, and required invasive species tags for boats. Such

Fig. 3. Hundreds of nonnative aquatic species are now established in the Columbia River Basin, and many have changed food webs in unanticipated and unwanted ways by shifting predation pressure or fundamentally altering fluxes of energy and nutrients. (A) M. diluviana and (B) American shad (A. sapidissima) are abundant and important competitors with planktivorous salmonids and potentially serve as a nonnative energy source, thus expanding predator populations and increasing predation mortality on resident and anadromous salmonids. Furthermore, altered environmental conditions are allowing the expansion of many native predators, including (C) Caspian terns (H. caspia), thereby directly altering food webs and increasing predation on native salmonids (48, 49). Photos courtesy of (A) www.flickr.com/photos/wontolla_jcb/2475661498; (B) D. Haselman, and (C) Bird Research Northwest.

An Example: Bioenergetic Simulation of Food Demand and Feeding Rate by Spring–Summer Chinook Smolts. Growth and feeding rates of spring–summer Chinook salmon during peak migration of smolts illustrate their food demands and the potential effects on both wild and hatchery-reared fish. Using bioenergetic modeling, we estimated the food demands of wild and hatchery-reared Chinook that were passive integrated transponder (PIT)-tagged at Lower Granite Dam and recovered 461 km downstream at Bonneville Dam from April to July of 2008.
programs could be expanded to other aquatic invertebrates, vertebrates, and macrophytes to complement intervention with existing problematic nonnative species. The stark reality is that hybrid food webs will persist; nonnative species are widely established, and eradication will be difficult, if not impossible. The challenges are exemplified by introductions of opossum shrimp, lake trout and brook trout (Salvelinus namaycush and S. fontinalis), and various other non-native fishes into the upper Columbia (28), which have fundamentally altered aquatic communities and jeopardized recovery of bull trout (S. confluentes) and other native species (Fig. 3).

A Basin-wide monitoring program is needed to address the temporal pace and spatial extent of continuing nonnative introduction, invasion, and establishments and identify impending problems while they are still manageable. As a start, it would be prudent to reevaluate ongoing stocking practices for nonnative species that are inconsistent with the conservation of native biota and their food webs. Identifying which nonnative species may support or disrupt important functions and processes is essential for successful restoration of federally listed species and important ecological services. Improved public education is also needed to help prevent future introductions of nonnative species through aquarium releases, ballast water discharges, live seafood, boat trailers, and ornamental plants.

Other Important Food Web Concerns. Biotic conservation is most successful where actions are aimed at protecting ecosystems rather than restoring or reclaiming them and is a priority. For the Columbia and other rivers, the need for a concerted effort to protect the food webs of critical environments is increasingly recognized. A robust strategy would preserve food web diversity, which includes access by species to a mosaic of connected habitats (for reproduction, growth, refuge, and migration) with different productivities and mixtures of native and nonnative species, even while steering degraded systems to more productive status. A broad range of additional food web issues needs to be addressed and will allow the more complete understanding necessary for effective management. These issues include understanding the consequences of altered nutrient, organic matter (energy), water, and thermal sources and flows, reconnecting critical habitats and their food webs, and restoring for changing environments (SI Text, section 8).

Incorporating a Food Web Perspective into Management

Incorporating food web considerations into management helps test restoration assumptions and leads to discovery of species interactions that influence management success. Although the construction and modeling of complete food webs may be difficult, there are approaches that can yield useful results relatively quickly. Specifically, we suggest a tractable framework that focuses on key processes and interactions that affect growth and survival of salmonids. First steps could include (i) use of focal species to quantity interactions with prey, competitors, predators, pathogens, and parasites and environmental conditions; (ii) use of stable isotopes and diet analysis to quantify food-related interactions, especially with predators, invasive species, or hatchery-reared salmonids; (iii) use of bioenergetic models to estimate demands on food supplies by intra- and interspecific competitors and diagnose the interplay between temperature, food availability, and quality within the growth environment of key species; (iv) consideration of density dependence in growth and survival associated with artificially elevated abundance through hatchery stocking; and (v) understanding the effects of chemicals and toxins on specific food web structures and processes. These and other targeted approaches can identify or environmental conditions that impact restoration goals, allowing managers to focus on critical processes at relevant locations and times.

Furthermore, food web modeling, like habitat modeling, has an important place—if for no other reason than the development of testable hypotheses that can be confirmed or refuted. In the Columbia, linked trophic and population models have been essential in understanding the scope of predation by northern pikeminnow (Ptychocheilus oreognensis) and nonnative predators in the mainstem river reservoirs (59–62), impacts of predation by gulls (Larus spp.) and Caspian terns (Hydroprogne caspia) on migrating juvenile salmon (63–66), impacts of nonnative mysids and lake trout on kokanee and native salmonids in lakes (28, 67), complex species interactions (68), and stage-specific growth and survival of some juvenile salmon populations during freshwater and early marine rearing (69, 70).

General statistical and population models have been used to explore density dependence and carrying capacities in lake- and stream-rearing populations (71–74). More broadly, trophic modeling has greatly improved the understanding of lake conditions in North America (20, 26). A comprehensive food web model should be general enough that the inputs can be changed to accommodate variability in thermal regime, feeding, diet, and growth at appropriate temporal and spatial scales to both forecast what would happen and update inputs when experience suggests key components are missing.

Specifically for the Columbia, whether restoration actions are effective cannot be known for many years. However, NPCC, state and federal agencies, and Columbia River tribes are actively involved in discussions about implementation of food web considerations—and the availability and sharing of data—within the existing Fish and Wildlife Program. Most importantly, this discussion has raised awareness of the key roles of food webs in restoration. The needs to consider carrying capacity, chemical impacts, hybrid communities, future conditions, and data transparency are paramount when prioritizing expensive restoration activities. Implementing a food web perspective for the Columbia River complements the four HSs and thereby enhances the ability to meet the vision and legal obligations of the US Endangered Species Act and the need for improved river management.

Acknowledgments. We thank K. Barnas, B. Chockley, M. DeHart, M. Ford, B. Muir, D. Roby, J. Ruff, P. Roger, B. Sanderson, L. Sutton, and V. Hare for supplying critical information; the numerous individuals and organizations who graciously responded to requests for information; J. Dunne for providing Network3D software; and L. Robinson and E. Schrepel for keeping the committee on task, organizing drafts, preparing graphics, and compiling references.

40. FPC (Fish Passage Center) (2009) 2008 Annual Report (Columbia Basin Fish and Wildlife Authority, Portland, Oregon).

