# Juvenile Salmon Acoustic Telemetry System JSATS

Brad Eppard
AFEP Coordinator
Portland, Oregon
December 14, 2011







US Army Corps of Engineers
Portland District

## **JSATS: Program Overview and Objectives**

- Develop a system for study of subyearling Chinook through the Columbia River estuary
  - Developed to maximize detection in a riverine environment (fast flowing, shallow, salt water)
- Adopted as the standard for upriver studies due to advantages of economy of scale
  - Standardized methods and techniques
- 3. Is a non-proprietary system that helps to reduce costs by allowing for full and open competitive procurement
  - Resulted in the smallest and least expensive acoustic transmitter on the open market
- 4. Further development to miniaturize the transmitter for use in smaller juvenile salmonids and eventually juvenile lamprey







#### **JSATS: Recent and Current Uses**

- Dam passage survival (Performance Standard Testing)
  - ► LCR Survival Study (2008-2012) (CH1, CH0, STHD)
  - ► Snake River Survival Study (2012 ?) (CH1, CH0, STHD)
- Dam passage behavior (2d and 3d positioning)
  - ➤ Cougar Dam (2011 2012) (CH1)
  - ▶ Detroit Dam (2012 ?) (CH1, STHD)
- Survival through the estuary (2005-2010) (CH1, CH0, STHD)
  - ► Migration behavior and timing into the ocean (2010)
- Survival of transported fish (2010) (CH1)
- Migration and fate of adult Pacific Lamprey (2010-2012)





#### **JSATS: 2012 Studies**

| Study                             | Management Application                                                        | N tags |
|-----------------------------------|-------------------------------------------------------------------------------|--------|
| LCR Survival Study<br>(MCN – BON) | BiOp Performance Standard testing (CH1, CH0, and STHD)                        | 24,000 |
| SR Survival Study (LGO-LMN)       | BiOp Performance Standard testing (CH1, CH0, and STHD)                        | 24,000 |
| Cougar Dam                        | Passage behavior for informing downstream passage alternatives (CH1)          | 1,200  |
| Detroit Dam                       | Passage behavior for informing downstream passage alternatives (CH1 and STHD) | 1,200  |
| Steelhead Kelt passage at BON     | Passage behavior to inform decision on BON powerhouse priority                | 300    |
| Lamprey                           | Migration timing and fate of adult lamprey in the BON pool                    | 60     |



#### **JSATS: Why Acoustic Telemetry**

#### Why Acoustic Telemetry?

- ► AT is less invasive (no external antenna)
- ► AT allows for 2d and 3d tracking
- ► AT is detectable in brackish and salt water

#### Why JSATS?

► Non-proprietary specifications allow competitive procurement reducing costs while spurring innovation by the open market

#### Why not PIT tags?

Reduced detection range. Doesn't provide passage behavior information

#### Why not Radio Telemetry?

- ► Larger tag size needed for equivalent tag life
- External antenna and effects on fish
- Detection is 1D (presence /absence)





- 2008-2011 JSATS Transmitter
  - ► Frequency: 417 kHz
  - ► Mass: 0.43 g in air, 0.29 g in water
  - ▶ Dimensions: 12.00 x 5.21 x 3.77 mm
  - ► Source level: 156dB re:1µPa at 1m









2008-2010 JSATS Transmitter Tag Life







- 2012 JSATS Transmitter
  - ► Mass: 0.30 g in air, 0.19 g in water
  - ▶ Dimensions: 10.8 x 5.2 x 3.4 mm
  - ► Source level: 156 dB re:1µPa at 1m







2012 JSATS Transmitter Tag Life







#### **JSATS: Acoustic Telemetry Limitations**

- Transmitter life
  - ► Not sufficient for estimating smolt-to-adult return rates
- Implantation
  - Surgical procedure required for implantation
- Signal Detection
  - ► Detection range is lessoned or difficult (if not impossible) in high velocity, turbulent flows or noisy or extremely shallow environments
  - ► In salt water range is less than lower frequency systems
- Transmitter size
  - Currently too big for the smallest subyearlings (and fry) or juvenile lamprey
- Code Space
  - ► Limited number of unique codes



- 2012 JSATS Receivers
  - ► Cabled Receiver
    - Detection range in fresh water =
       75 250 m dependent on
       ambient noise
  - ➤ Autonomous Receivers
    - Detection range in freshwater = 150 – 300 m dependent on water velocity
    - Detection range in saltwater approximately 50% of freshwater









## **JSATS: Transmitter Downsize Project**

- Project Goals
  - ▶ Develop an injectable acoustic transmitter that meets the performance specifications of the current transmitter
    - 0.2 grams dry weight
    - 3.0 mm in diameter
    - 12-15 mm in length
    - Meet current transmitter tag life and source level requirements
  - ► First for salmon, then for juvenile lamprey





## **JSATS: Transmitter Downsize Project**

- Project Team
- Project Elements
  - ► Acoustic Element (PZT)
  - ► Electronics (ASIC)
  - ▶ Battery
  - ▶ Packaging
  - ► Manufacturability
- Schedule
  - ▶ On track for completion in March, 2013
  - ► Goal is to implement in 2014 studies



