OPUC Flexibility Planning Guidelines

Pacific Northwest Demand Response Project
February 14, 2013

Jim Hicks
Energy Strategies West, LLC
OPUC’s New IRP Guidelines*

• Integrated Resource Plans to include:
 – Forecasts of flexibility needs and flexible capability in all time intervals, 20 year horizon
 – Evaluate all flexible resources to fill any needs on a consistent and comparable basis

• Response to planning challenges/opportunities
 – Increasing net load variability
 – Emergence of new tools, including demand management, to absorb that variability, maintain reliability
 – Need a planning approach that differentiates between capacity and flexibility; value of different resources/strategies across multiple time dimensions

* OPUC Order 12 013 issued January 19, 2012 in Docket UM 1461 (Electric vehicle investigation)
Net Load Variability

- Frequency, amplitude and duration of VER variability precludes single or easy solution
 - Continuous short-term production variability puts premium on speed/accuracy of response
 - Fast, large magnitude ramps may not align with load ramps
 - Extended periods of low/no VER production
- Demand for flexibility dramatically increased at higher penetration levels of VERs
- SCCTs (& low gas prices) the default solution, but there is a growing list of alternatives
- Reforms and new technologies suggest a more operational view of planning, including comprehensive multi-faceted VER integration strategy
One 3,000 MW wind ramp in 7 days
5,000 + MW of hydro system flexibility, thermal reasonably stable
Similar load 5-7,000 MW
Three days of significant wind production
Hydro output higher with less flexibility; thermal at lower output and absorbing variability
Flexibility Sources

• Diversity (access) strategies – geographic/technology diversity, BA consolidation/cooperation, markets
• Generation – fast responding hydro, CTs, reciprocating engines
 – CT/recips “wear & tear”, response range a fraction of nameplate, potentially degraded fuel/emissions performance
• Storage – response range 2X nameplate
 – Short, limited capacity (batteries, flywheels) fast, accurate
 – “Bulk”, longer duration (pumped hydro, CAES)
 – Thermal storage (molten salt, ice, hot water)
• Demand management – smart grid controllable “withdrawal” and “recharge”
What is the piece of the flexibility question that we have not talked about?

And don’t forget your valentine!!
Flexibility Sources

Institutional Reforms

• Break with traditional hour-based operating regimes
 – Sub-hourly generation and transmission scheduling intervals closer to the operating period
• Refine ancillary services definitions; align value recognition and compensation with performance
• Reform planning & resource acquisition processes
 – Identify operating/flexibility needs, alternative solutions
 – Full operations benefit/value comparisons, technology neutrality
 – Inclusive RFP bidding rules/evaluation; example, shorter/smaller A/S performance minimums
• Balancing area cooperation to broaden flexibility choices
 – Rate accommodation (avoid TX rate pancaking)
 – Adequacy of transmission
 – Markets (i.e., EIM) and liquidity
Flexibility Sources

Storage 1

- Regulatory and business model issues remain
 - Definition/regulatory authority - generation asset or transmission asset? Or neither?
 - Utility ownership (ratebase), independent 3rd party ownership with PPAs or tolling agreements

- Storage is not just a VER integration tool, can unlock value of existing assets (G or T, or D) regardless of VERs
 - Short to long continuum of technologies

- Flywheels (<15 min) and batteries (up to hours)
 - Faster/more accurate response to frequency excursions - full up/down capacity available in less than a second (2X nameplate) versus CT’s fractional operating range
 - Advances, scale and full recognition of benefits to system making costs increasingly competitive with CTs
 - Modularity of batteries & flywheels/siting simplicity advantage
 - Commercial projects around the world
Flexibility Sources

Storage 2

• Compressed air energy storage (CAES)(up to 24 hours)
 – 2nd generation technology near commercial maturity
 – High quality (faster than CT) reserves, low fuel burn “bulk” storage, fast recharge
 – Unique siting/geology requirements (salt dome, aquifer, depleted gas fields, deep water, abandoned mines)*
 – Pilots under way in California and New York, other proposals

• Pumped hydro (hours)
 – Mature technology “bulk” storage
 – Dynamic controls for generation and recharge improve value
 – Difficult siting possibly eased with closed systems
 – Many proposals, no new construction....yet

*Above ground pipe storage vessel designs generally limited to several hours
Flexibility Sources
Demand Response/Demand Management

• DR & time-based rates and VERs developing on own tracks; little regard for complimentary operations
• Potential of the demand resource and related technologies has been demonstrated
• Communication & control technologies within reach
• Financial incentives to induce participation
 – TOU rates
 – Rebates on interrupted service
 – Market solutions, allow/encourage aggregators