James Yost Chair Idaho

W. Bill Booth Idaho

Guy Norman Washington

Tom Karier Washington

Jennifer Anders Vice Chair Montana

> Tim Baker Montana

Ted Ferrioli Oregon

Richard Devlin Oregon

March 6, 2018

MEMORANDUM

- TO: Power Committee
- FROM: John Fazio, Tina Jayaweera

SUBJECT: Power System Value of Conserved Irrigation Diversions

BACKGROUND:

- Presenter: John Fazio, Senior Systems Analyst
- An estimate of the power-system value of conserved irrigation diversions Summary: that stay in the hydroelectric system is presented. It should be noted that for certain watersheds in the region, conserved irrigation water may more likely be utilized by other water users and, therefore, not pass through the hydroelectric system. For these areas, there is no additional energy generated or increased revenue and thus no power-system benefit. For conserved diversions that stay in the system, however, for each thousand acre-feet of water that passes through Grand Coulee and all downstream dams generates 1,026 megawatt-hours of energy over the irrigation season. The same volume of water left in the system in the upper Salmon, the Walla Walla and the Deschutes areas generates 216, 147, and 46 megawatt-hours, respectively. Average revenues gained from conserved irrigation diversions at the sites listed above are roughly \$57, \$12, \$8 and \$3 per acre-foot, respectively (based on an average electricity price of \$55 per megawatt-hour).

The Council will be deciding whether to release this white paper for public comment during Council business on Wednesday March 14.

- Relevance: The Regional Technical Forum has developed savings estimates for measures to reduce water usage for irrigation. These measures will not only save electricity but also water that in many cases will stay in the river and produce additional hydroelectric generation. The added power system value of water that stays in the system could be used by the RTF and others to more fully capture the benefits of these conservation measures. The attached report describes the methods used to assess the added power system benefit and provides results for various locations in the basin both in terms of gained energy and revenue.
- Workplan: This work is in response to the Council's Seventh Power Plan Action item ANLYS-9, which is to conduct research to improve understanding of electric savings in water and wastewater facilities from reduction in water use.
- Background: Irrigation withdrawals in the Columbia River Basin result in a net annual reduction in streamflow volume of about 14.4 million acre-feet (Maf) at McNary of which about 8.4 Maf is due to withdrawals in the Snake River Basin. For perspective, the annual average streamflow volume for the Columbia River is about 135 Maf (as measured at The Dalles Dam). Most irrigation withdrawals are made in late spring and summer, with a portion of withdrawn water returning to the river at downstream locations and at later dates. Conserving irrigation water and keeping it in the hydroelectric system increases both energy production and revenue, which can offset the costs of conservation.

Power System Value of Conserved Irrigation Diversions

John Fazio and Tina Jayaweera Power Committee Meeting Portland, Oregon March 13, 2018

Northwest **Power** and **Conservation** Council

	Mc	onthly A	Averag (MW	e Pow /Kcfs)	er Fact	ors
	Period	GCL	PRS	LWG	MCN	TDL
	AP2	57.2	15.7	28.3	13.4	5.9
	MAY	49.9	13.4	27.4	11.9	5.7
	JUN	43.7	12.8	24.9	11.5	5.0
	JUL	58.1	17.0	28.7	15.2	6.3
	AG1	64.7	17.4	24.2	15.0	5.8
	AG2	69.8	17.1	31.8	13.2	4.7
	SEP	83.4	27.7	51.6	22.7	10.8
Northwe	est Power and r ation Council			7		

Month MW-Hours per Kaf Apr2 460 May 400 June 340 July 340 Aug1 340 Sep 295
Apr2 460 May 400 June 340 July 340 Aug1 340 Aug2 340 Sep 295
May 400 June 340 July 340 Aug1 340 Aug2 340 Sep 295
June 340 July 340 Aug1 340 Aug2 340 Sep 295
July 340 Aug1 340 Aug2 340 Sep 295
Aug1 340 Aug2 340 Sep 295
Aug2 340 Sep 295
Sep 295
·

Г

٦

AP2 1102 198 MAY 961 191 UIN 828 174	134 119	42
MAY 961 191	119	
ILIN 929 17/	-	41
JUN 020 1/4	115	36
JUL 989 200	151	46
AG1 1068 169	149	42
AG2 1129 222	132	34
SEP 1218 360	227	78
AVG 1026 216	147	46

Г

5

Average Electricity Price (\$/MW-Hours)						
(from 7 th Plan 2B Scenario)						

	Period	Col Basin	Up Salmon	Walla Walla	Deschutes
	AP2	52	52	52	52
	MAY	52	52	52	52
	JUN	53	53	53	53
	JUL	55	55	55	55
	AG1	59	59	59	59
	AG2	59	59	59	59
	SEP	58	58	58	58
	AVG	55	55	55	55
Northwest Power and Conservation Council			10		

Northwest **Power** and **Conservation** Council

