RPM Approach to Conservation in the Seventh Power Plan
Ben Kujala & Charlie Grist
December 2014

Regional Portfolio Model (RPM)

- What it is
- Tests resource strategies against many futures
- Measures cost & risk of each resource strategy
- Conservation one of the resources among the resource strategies
- RPM tests conservation avoided cost levels as a decision variable
Overview of Steps

1. Build Supply Curves
2. Schedule Availability
3. Adjust Retrofit Supply Curve for Program Deployment
4. Shape Savings by Season & Hi/Lo
5. Regional Portfolio Model
7. Conservation Build-Out over 750 futures
8. Conservation Targets & Action Plan

Conservation Potential Assessment

- Two critical components for RPM
 1. Cost
 2. Availability of energy over time
- Other important components
 - Shape of energy savings
 - Impact on coincident peak
Cost of Conservation

- Levelized cost per kWh
 - Total Resource Cost
 - Net of Regional Act Credit
 - Levelized over 20-year forecast period
 - Levelized cost normalizes different measure lives
- For RPM: Combine all conservation measures into cost tiers
 - Each tier a collation of measures in that cost bundle
 - Separate lost-opportunity & retrofit sets
 - Tiers are NOT “programs”

Conservation Availability Over Time

- Three key time parameters passed to RPM for each cost bin
 1. Annual maximum
 2. Total not to exceed over 20-year period
 3. Ramp rate year-to-year
- These factors driven by
 1. Units forecast & stock turnover models
 2. Program ramp rates
 3. Load forecast (future load level)
Example

Measure 1:
• Total Available 1000 aMW
• Turnover 5 years
• Fast Program Ramp

Measure 2:
• Total Available 700 aMW
• Turnover 9 years
• Slow Program Ramp

Example

Measure 1 & 2 Combined ($20 Cost Bin)

Total Not to Exceed
1000 aMW M1
700 aMW M2
1700 aMW Comb
Conservation Availability Over Time (2)

- Better reflect availability of fast-turnover lost-opportunity measures
 - We don't know what EE will be cost-effective
 - RPM tests conservation avoided cost decision rules against hundreds of future market prices & load levels
 - Supply curves must reflect availability without foreknowledge of if or when RPM might acquire
- Fast-turnover measures re-present as opportunities in later years, if not acquired in earlier years

Possible Impact

- More fast-turnover measures available through term of planning period than 6P
- May reduce premium for lost-opportunity
 - It’s not all lost forever
Retrofit Conservation Logic

- Same three parameters describe retrofit conservation availability
 1. Annual maximum
 2. Total not to exceed over 20-year period
 3. Ramp rate year-to-year
- RPM logic for retrofit to be similar
- RPM purchases from all bins up to cost tested
- May supersede need for 160 aMW max from 6P

Overview of Steps

1. Build Supply Curves
2. Schedule Availability
3. Adjust Retrofit Supply Curve for Program Deployment
4. Shape Savings by Season & Hi/Lo
5. Regional Portfolio Model
7. Conservation Build-Out over 750 futures
8. Conservation Targets & Action Plan