council logo
Contact
About

Integrating energy and the environment in the Columbia River Basin

About the Council
Mission and Strategy Members and Staff Bylaws Policies Careers / RFPs
News

See what the Council is up to.

Read the Latest News
Read All News Press Resources Newsletters International Columbia River

Explore News By Topic

Fish and Wildlife Planning Salmon and Steelhead Wildlife Energy Planning Energy Efficiency Demand Response
Fish and Wildlife

The Council works to protect and enhance fish and wildlife in the Columbia River Basin. Its Fish & Wildlife Program guides project funding by the Bonneville Power Administration.

Fish and Wildlife Overview

The Fish and Wildlife Program

2025-26 Amendment Process 2014/2020 Program Program Tracker: Resources, Tools, Maps Project Reviews and Recommendations Costs Reports

Independent Review Groups

  • Independent Economic Analysis Board (IEAB)
  • Independent Scientific Advisory Board (ISAB)
  • Independent Scientific Review Panel (ISRP)

Forums and Workgroups

  • Asset Management Subcommittee
  • Ocean and Plume Science and Management Forum
  • Regional Coordination
  • Science and Policy Exchange
  • Toxics Workgroup
  • Columbia Basin Research, Monitoring and Evaluation Workgroup
  • Informal Hatchery Workgroup
  • Strategy Performance Indicator Workgroup

Topics

Adaptive Management Anadromous Fish Mitigation Blocked Areas Hatcheries & Artificial Production Invasive and Non-Native Species Lamprey Predation: Sea lions, pike, birds Protected Areas Research Plan Resident Fish Program Tracker: Resources, Tools, Maps Sockeye Sturgeon
Power Planning

The Council develops a plan, updated every five years, to assure the Pacific Northwest of an adequate, efficient, economical, and reliable power supply.

Power Planning Overview

The Northwest Power Plan

9th Northwest Power Plan The 2021 Northwest Power Plan 2021 Plan Supporting Materials 2021 Plan Mid-term Assessment Planning Process and Past Power Plans

Technical tools and models

Advisory Committees

Climate and Weather Conservation Resources Demand Forecast Demand Response Fuels Generating Resources Resource Adequacy System Analysis Regional Technical Forum (RTF) RTF Policy

Topics

  • Energy Efficiency
  • Demand Response
  • Power Supply
  • Resource Adequacy
  • Energy Storage
  • Hydropower
  • Transmission

ARCHIVES

Meetings
See next Council Meeting June 10 - 11, 2025 in Missoula › See all meetings ›

Recent and Upcoming Meetings

Swipe left or right
NOV 2024
WED
06
1:00 pm—4:00 pm
System Analysis Advisory Committee
NOV 2024
THU
07
10:00 am—12:00 pm
Demand Response Advisory Committee
NOV 2024
WED THU
13 - 14
Council Meeting
NOV 2024
TUE WED
19 - 20
RTF Meeting
NOV 2024
THU
21
1:00 pm—2:00 pm
Resource Cost Framework in Power Plan Webinar
NOV 2024
FRI
22
9:30 am—11:30 am
Fuels Advisory Committee
DEC 2024
MON
02
11:00 am—12:00 pm
Demand Response Advisory Committee
DEC 2024
WED
04
10:00 am—12:00 pm
Climate and Weather Advisory Committee
1:00 pm—4:00 pm
RTF Policy Advisory Committee Q4
DEC 2024
TUE WED
10 - 11
Council Meeting
DEC 2024
TUE
17
9:00 am—4:00 pm
RTF Meeting
JAN 2025
WED
08
9:30 am—3:30 pm
Conservation Resources Advisory Committee
JAN 2025
MON
13
10:00 am—12:00 pm
Demand Forecasting Advisory Committee
JAN 2025
TUE WED
14 - 15
Council Meeting
JAN 2025
WED
22
1:00 pm—4:00 pm
RTF New Member Orientation
JAN 2025
THU
23
9:00 am—4:00 pm
RTF Meeting
JAN 2025
MON
27
1:00 pm—3:00 pm
Fuels Advisory Committee
JAN 2025
FRI
31
9:30 am—3:30 pm
Generating Resources Advisory Committee
FEB 2025
WED
05
9:00 am—12:00 pm
System Analysis Advisory Committee
FEB 2025
TUE WED
11 - 12
Council Meeting
FEB 2025
WED
19
2:00 pm—4:00 pm
Demand Forecast Advisory Committee
FEB 2025
THU
20
9:00 am—12:15 pm
RTF Meeting
1:30 pm—4:30 pm
Demand Response Advisory Committee
FEB 2025
FRI
21
9:30 am—12:30 pm
Conservation Resources Advisory Committee
FEB 2025
THU
27
1:00 pm—4:00 pm
Resource Adequacy and System Analysis Advisory Committees Combined Meeting
MAR 2025
FRI
07
9:00 am—12:00 pm
Approach to Modeling Operational Risks from Wildfires Webinar
MAR 2025
MON WED
10 - 12
Council Meeting
MAR 2025
TUE
18
9:00 am—4:00 pm
RTF Meeting
MAR 2025
THU
20
1:00 pm—4:00 pm
Demand Response Advisory Committee
MAR 2025
WED
26
1:00 pm—3:00 pm
Generating Resources Advisory Committee
MAR 2025
THU
27
9:00 am—11:00 am
Resource Adequacy Advisory Committee - Steering Committee
12:30 pm—1:30 pm
Special Council Meeting
APR 2025
THU
03
1:00 pm—3:00 pm
Climate and Weather Advisory Committee
APR 2025
TUE WED
08 - 09
Council Meeting
APR 2025
THU
10
9:00 am—11:00 am
Fuels Advisory Committee Meeting
APR 2025
TUE
15
9:00 am—11:30 am
RTF Meeting
APR 2025
WED
16
1:30 pm—4:00 pm
Demand Response Advisory Committee
APR 2025
MON
21
1:00 pm—5:00 pm
Conservation Resources Advisory Committee
APR 2025
THU
24
9:00 am—10:00 am
Public Affairs Committee
APR 2025
TUE
29
1:00 pm—3:00 pm
Council Meeting
MAY 2025
TUE WED
13 - 14
Council Meeting
MAY 2025
FRI
16
2:00 pm—4:00 pm
Demand Forecast Advisory Committee
MAY 2025
THU
22
9:00 am—2:30 pm
RTF Meeting
MAY 2025
THU
29
9:00 am—12:00 pm
Conservation Resources Advisory Committee
MAY 2025
FRI
30
1:30 pm—3:00 pm
Demand Response Advisory Committee
JUN 2025
TUE WED
10 - 11
Council Meeting
JUN 2025
TUE WED
17 - 18
RTF Meeting
JUL 2025
TUE WED
15 - 16
Council Meeting
JUL 2025
TUE
22
9:00 am—4:00 pm
RTF Meeting
AUG 2025
TUE WED
12 - 13
Council Meeting
AUG 2025
TUE WED
19 - 20
RTF Meeting
SEP 2025
TUE WED
09 - 10
Council Meeting
SEP 2025
TUE
16
9:00 am—4:00 pm
RTF Meeting
OCT 2025
WED THU
15 - 16
Council Meeting
OCT 2025
TUE
21
9:00 am—4:00 pm
RTF Meeting
NOV 2025
THU
13
9:00 am—1:00 pm
RTF Meeting
NOV 2025
TUE WED
18 - 19
Council Meeting
DEC 2025
TUE
09
9:00 am—4:00 pm
RTF Meeting
DEC 2025
TUE WED
16 - 17
Council Meeting
View Council Meetings View All Meetings
Reports and Documents

Browse reports and documents relevant to the Council's work on fish and wildlife and energy planning, as well as administrative reports.

Browse Reports

REPORTS BY TOPIC

Power Plan Fish and Wildlife Program Subbasin Plans Financial Reports Independent Scientific Advisory Board Independent Scientific Review Panel Independent Economic Analysis Board

COLUMBIA RIVER HISTORY PROJECT

Review of NOAA Fisheries' Viable Salmonid Population (VSP) Modeling of Willamette River Spring Chinook Populations

Council Document Number: 
ISAB 2014-4
Published date: 
Aug. 1, 2014
Document state: 
Published

Executive Summary: ISAB Review of Fish Passage Analyses and Life-Cycle Models for the U.S. Army Corps of Engineers’ Willamette Valley Project 

November 3, 2014

Background

In August 2014, the ISAB completed a two-part review of salmonid passage and life-cycle modeling associated with the Willamette Project, a system operated by the U.S. Army Corps of Engineers that comprises 10 high-head federal dams and reservoirs, three run-of-river dams that function as re-regulating projects, and 42 revetments located in Willamette River tributaries. Bonneville Power Administration (BPA) is responsible for marketing and transmitting power generated from 8 dams, with the remaining dams being non-power producing facilities. The U.S. Bureau of Reclamation (BOR) administers a water marketing program to agricultural users for water stored in Corps’ reservoirs.

The models reviewed by the ISAB were developed by the Corps, NOAA Fisheries, and other cooperators to inform the Corps’ Configuration and Operations Plan, which is to be completed by December 2014. The ISAB first reviewed the Fish Benefits Workbook (FBW), which was designed as a tool to help evaluate alternative approaches to improving downstream passage efficiency and survival of salmonids through dams and associated reservoirs in the Willamette River Basin (ISAB 2014-3; June 23, 2014). The ISAB then reviewed NOAA Fisheries’ Viable Salmonid Population (VSP) life-cycle modeling of Willamette River spring Chinook populations (ISAB 2014-4; August 1, 2014), which depends on inputs from the FBW and other data sources to predict salmonid viability under alternative structural or operational changes to the dams. The ISAB reviews are intended to provide constructive feedback to the Corps, NOAA Fisheries, and their cooperators as they complete analyses supporting the Configuration and Operations Plan.

This executive summary covers both ISAB reviews and is intended to convey the ISAB’s primary findings and recommendations to decision makers and a general audience. The ISAB recognized the need for a short high-level summary during discussions with the Corps and model developers after the more detailed reviews had been released.

Primary Findings

Valid Approach:The approach for estimating VSP scores based on outputs from the FBW and VSP life-cycle models was judged to be conceptually and technically valid. The ISAB recognizes this was a sophisticated effort to grapple with a very difficult task. VSP scores for diversity and spatial structure parameters are based on qualitative assessments, but this approach seems reasonable given that data are insufficient to conduct a more quantitative analysis. Similarly, modeling genetic impacts of hatchery fish as a reduction in wild egg-to-fry survival based on proportionate natural influence is somewhat speculative, but the approach seems plausible and consistent with current theory. The ISAB sees merit in the effort to consider genetic impacts of hatcheries within the model.

Limited Data:Developing a life-cycle model of this complexity for Willamette Chinook populations is particularly challenging because insufficient biological information for many parts of the models is available to model the life cycle of individual populations with confidence. In short, the modeling effort is far ahead of the empirical data needed to fit and verify the models. Faced with an absence of location-specific data, the authors have made a commendable effort to parameterize models with ranges derived from expert opinion generated through formal procedures at workshops, rather than arbitrary guesswork. Moreover, the models are flexible enough to incorporate additional information as it becomes available in the long term.

Uncertain Outputs:Just as conclusions from a valid argument will be unsound if its premises are wrong, predictions of future spawner abundances and VSP scores from the existing life-cycle model should be considered highly uncertain given limitations on the quality of data currently available. The ISAB suggests that this uncertainty has been underestimated and that the confidence intervals on outcomes are probably too narrow. In population viability analyses, it is typically more feasible to rank the relative performance of different management scenarios than to estimate absolute values of survival or extinction risk under those scenarios. Even so, given the wide confidence intervals on the final VSP scores, it is not clear how significantly the results differ among scenarios. It might also be true that self-sustaining, natural-origin salmon runs cannot be achieved under any of the scenarios considered.

Additional Considerations: Because quantitative outputs from the existing models may be unreliable to differentiate among the options, additional steps should be considered to support decision making in the near term. Weighting factors, including expected survival benefits and other considerations, might be useful for ranking the alternatives under review. Incremental implementation of some alternatives (i.e., where feasible) might be advantageous provided the decision-making process remains flexible and monitoring is adequate to evaluate early results. An adaptive approach would allow decisions to be revisited if benefits expected from an operational regime were not being realized or if new information were to suggest that greater benefits could be achieved by different actions.

The current FBW and life-cycle models provide a systematic foundation for exploring the potential value of collecting additional data. Further sensitivity analysis could help to prioritize research by identifying the kinds of additional data that would improve quantitative assessment of management options in the long term. This approach seems warranted given that the performance of these models is currently limited by the availability of data. With more complete data, these models could be used to predict and evaluate the long-term success of actions to improve dam passage, as well as to assess the probable impacts of other factors affecting viability such as hatchery fish, habitat conditions, prespawning mortality, predators in the reservoirs, and climate change.

Recommendations 

Uncertainty and Data Gaps:

  1. Improve documentation of assumptions, data sources, parameter values, and reasons for choosing parameter values in the FBW and VSP life-cycle models. More explicit documentation would improve transparency and aid in communicating the appropriate use of the results, and in refining the models as more information becomes available. In addition, more ResSim documentation is needed because the FBW is dependent on ResSim outputs.
  2. Clarify how stochastic variability is represented in the life-cycle model. In particular, it is not clear which components of the model include year-to-year variability and which do not.
  3. Conduct simulations with ResSim that replicate past operations at each reservoir in order to verify that the model can adequately predict flows in the FBW (or document the magnitude of errors).
  4. Conduct further sensitivity analyses to identify and prioritize data gaps that must be filled to enable a more reliable assessment of options for structural, operational, and other changes to dam management and other parts of the system.

Research to Address Known Issues:

  1. Conduct field research and additional modeling to improve capabilities to predict and reduce pre-spawning mortality. The sensitivity analysis indicates that observed levels of pre-spawning mortality could compromise efforts to develop self-sustaining populations of Chinook salmon above the dams in the Willamette basin.
  2. Conduct field research to determine how reservoirs in the Willamette basin affect growth, migration, and survival of juvenile salmon and steelhead. This information appears essential for evaluating how various options for structural, operational, and other changes to dam management and other parts of the system affect population viability. Model predictions might also be improved by acquiring better data on the quantity and quality of habitat both above and below the projects, together with more explicit modeling of the influence of this habitat on VSP parameters.
Topics: 
Fish and wildlife
Tags: 
NOAA FisheriesSpring ChinookWillamette RiverNOAASpring Chinook SalmonISABVSPViable Salmonid Population

ISRP 2021-05 LibbyMFWPfollow-up1June.pdf

Download the full report

Sign up for our newsletter

  •    

Contact

  • Central Office
  • Idaho Office
  • Montana Office
  • Oregon Office
  • Washington Office
  • Council Members

Social Media

Facebook threads Instagram LinkedIn Vimeo Flickr

© NW Power & Conservation Council

Privacy policy Terms & Conditions Inclusion Statement